精英家教网 > 高中数学 > 题目详情
已知实数a,b均不为零,
asinα+bcosα
acosα-bsinα
=tanβ
,且β-α=
π
6
,则
b
a
=
 
分析:把已知条件的分子分母都除以acosα得到①,然后根据β-α=
π
6
解出β的关系式,求出tanβ的值得到②,由①②相等得到
b
a
的值即可.
解答:解:由
asinα+bcosα
acosα-bsinα
=tanβ
得到tanβ=
tanα+
b
a
1-
b
a
tanα
①,
β-α=
π
6
得到β=α+
π
6
,则tanβ=tan(α+
π
6
)=
tanα+
3
3
1-
3
3
tanα
②,
由①=②得到
b
a
=
3
3

故答案为:
3
3
点评:此题考查学生灵活运用同角三角函数间的基本关系弦化切,灵活运用两角和的正切函数公式化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a,b均不为零,
asinα+bcosα
acosα-bsinα
=tanβ
,且β-α=
π
6
,则
b
a
等于(  )
A、
3
B、
3
3
C、-
3
D、-
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知实数a,b均不为零,
asinα+bcosα
acosα-bsinα
=tanβ
,且β-α=
π
6
,则
b
a
等于(  )
A.
3
B.
3
3
C.-
3
D.-
3
3

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省杭州二中高三(上)10月月考数学试卷(理科)(解析版) 题型:选择题

已知实数a,b均不为零,,且,则等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2010年新教材高考数学模拟题详解精编试卷(5)(解析版) 题型:选择题

已知实数a,b均不为零,,且,则等于( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案