精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此结论求|
a
+
b
|的最大值.
分析:(1)根据题意,由
a
b
,可得
a
b
=0
,由数量积公式可得sinθ+cosθ=0,即tanθ=-1,结合θ的范围,即可得答案;
(2)由向量模的计算方法,有|
a
+
b
|=
2
2
sin(θ+
π
4
)+3
,由正弦函数的性质,分析可得当sin(θ+
π
4
)=1
时,|
a
+
b
|有最大值,即可得答案.
解答:解:(1)由
a
b
,得
a
b
=0

则有sinθ+cosθ=0,即tanθ=-1,
又由θ∈(-
π
2
π
2

因此θ=-
π
4

(2)|a+b|=
(sinθ+1)2+(cosθ+1)2
=
2(sinθ+cosθ)+3
=
2
2
sin(θ+
π
4
)+3

sin(θ+
π
4
)=1
时,|
a
+
b
|有最大值,
此时θ=
π
4
,|
a
+
b
|的最大值为
2
2
+3
=
2
+1
点评:本题考查向量数量积的应用,要掌握通过数量积来判断向量垂直,计算向量的模的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
)
b
=(1,cosθ)
θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表达式.
(2)用“五点作图法”画出函数f(x)在一个周期上的图象.
(3)写出f(x)在[-π,π]上的单调递减区间.
(4)设关于x的方程f(x)=m在x∈[-π,π]上的根为x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,则sin2θ+cos2θ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1)
b
=(2,2)
f(x)=
a
b
+2

①用“五点法”作出函数y=f(x)在长度为一个周期的闭区间的图象.
②求函数f(x)的最小正周期和单调增区间;
③求函数f(x)的最大值,并求出取得最大值时自变量x的取值集合
④函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
⑤当x∈[0,π],求函数y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作图
精英家教网

查看答案和解析>>

同步练习册答案