精英家教网 > 高中数学 > 题目详情
如图,已知椭圆,O为原点,点M是椭圆右准线上的动点,以OM为直径的圆与以椭圆长轴为直径的圆交于P、Q两点,直线PQ与椭圆相交于A、B两点,则|AB|的取值范围是   
【答案】分析:确定以OM为直径的圆与以椭圆长轴为直径的圆的方程,利用图形的对称性,可知当M在x轴上时,|AB|最小,当M在无穷远时,|AB|最大,由此可求得结论.
解答:解:设M(,m),则以OM为直径的圆的圆心为,半径为
所以圆的方程为
以椭圆长轴为直径的圆的方程为x2+y2=a2
根据图形可知,当M在x轴上时,|AB|最小,此时方程①为
②-③可得:x=c,代入椭圆方程,可得,∴,∴|AB|=
当M在无穷远时,|AB|最大,以OM为直径的圆与以椭圆长轴为直径的圆交于长轴的端点,∴|AB|→2a
∴|AB|的取值范围是
故答案为
点评:本题考查圆的方程,考查圆与椭圆的综合,考查了数形结合的解题思想与极限思想,解题的关键是确定圆的方程,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的长轴AB长为4,离心率e=
3
2
,O为坐标原点,过B的直线l与x轴垂直.P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连接AQ延长交直线l于点M,N为MB的中点.
(1)求椭圆C的方程;
(2)证明Q点在以AB为直径的圆O上;
(3)试判断直线QN与圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知△OFQ的面积为S,且
OF
FQ
=1

(Ⅰ)若
1
2
<S<
3
2
,求
OF
FQ
的范围;
(Ⅱ)设|
OF
|=c(c≥2),S=
3
4
c.
若以O为中心,F为一个焦点的椭圆经过点Q,以c为变量,当|
OQ
|
取最小值时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求
TM
TN
的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•崇明县二模)如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),M为椭圆上的一个动点,F1、F2分别为椭圆的左、右焦点,A、B分别为椭圆的一个长轴端点与短轴的端点.当MF2⊥F1F2时,原点O到直线MF1的距离为
1
3
|OF1|.
(1)求a,b满足的关系式;
(2)过F2作与直线AB垂直的直线,交椭圆于P、Q两点,当三角形PQF1面积为20
3
时,求此时椭圆的方程;
(3)当点M在椭圆上变化时,求证:∠F1MF2的最大值为
π
2

查看答案和解析>>

同步练习册答案