精英家教网 > 高中数学 > 题目详情

若正实数x,y满足2x+y+6=xy,则xy的最小值是_______.

 

【答案】

18

【解析】

试题分析:由条件利用基本不等式可得xy=2x+y+6≥2+6,令xy=t2,即 t=>0,可得t2-t-6≥0.即得到(t-3)(t+)≥0可解得 t≤-,t≥3,又注意到t>0,故解为 t≥3,所以xy≥18.故答案应为18

考点:本题主要考查了用基本不等式a+b≥2解决最值问题的能力,以及换元思想和简单一元二次不等式的解法,属基础题

点评:解决该试题的关键是首先左边是xy的形式右边是2x+y和常数的和的形式,考虑把右边也转化成xy的形式,使形式统一.可以猜想到应用基本不等式a+b≥2.转化后变成关于xy的方程,可把xy看成整体换元后求最小值。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若正实数x、y满足:2x+y=1,则
1
x
+
1
y
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若正实数x,y满足x+y=1,且t=2+x-
1
4y
.则当t取最大值时x的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若正实数x,y满足x+y=1,且t=2+x-
1
4y
.则当t取最大值时x的值为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知正数a、b满足a+b=1.求:
1
a
+
2
b
的最小值.
(2)若正实数x、y满足x+y+3=xy,求xy的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若正实数x,y满足
2x-y≤0
x-3y+5≥0
,则z=(
1
4
)
x
(
1
2
)
y
的最小值为(  )
A、
1
16
B、
1
4
C、
1
2
D、2

查看答案和解析>>

同步练习册答案