【题目】已知直线
:
,
:
,圆
:
.
(1)当
为何值时,直线
与
平行;
(2)当直线
与圆
相交于
,
两点,且
时,求直线
的方程.
【答案】(1)
;(2)
或
.
【解析】
(1)当
时,由直线平行,可得两直线斜率相等,即可求出
或
,将
的值带回直线方程进行验证,可舍去
;当
,求出两直线方程进行验证是否平行,进而可求出
的值.
(2)将已知圆的方程整理成标准方程形式,得到圆的半径和圆心,求出圆心到直线的距离,由勾股定理可知
,得到关于
的方程,从而可求出
的值,进而可求直线的方程.
解:(1)当
时,直线
的斜率
,
的斜率
,由两直线平行可知,
,解得
或
.当
时,
:
,
:
,符合题意,
当
时,
:
,
:
,此时两直线重合,不符合题意.
当
时,
:
,
:
,两直线垂直,不符合题意;
综上所述:
.
(2)由题意知,
:
,则圆的半径
,圆心为
,
则圆心到直线
的距离
.由
,得
整理得,
,解得
或
.
故所求直线方程为
或
.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x-m|-|2x+2m|(m>0).
(Ⅰ)当m=1时,求不等式f(x)≥1的解集;
(Ⅱ)若x∈R,t∈R,使得f(x)+|t-1|<|t+1|,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是抛物线
上一点,点
为抛物线
的焦点,
.
(1)求直线
的方程;
(2)若直线
与抛物线
的另一个交点为
,曲线
在点
与点
处的切线分别为
,直线
相交于点
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
,
,
,
是
的中点,E是棱
上一动点.
![]()
(1)若E是棱
的中点,证明:
平面
;
(2)求二面角
的余弦值;
(3)是否存在点E,使得
,若存在,求出E的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗
、
、
.经过引种实验发现,引种树苗
的自然成活率为
,引种树苗
、
的自然成活率均为
.
(1)任取树苗
、
、
各一棵,估计自然成活的棵数为
,求
的分布列及其数学期望;
(2)将(1)中的数学期望取得最大值时
的值作为
种树苗自然成活的概率.该农户决定引种
棵
种树苗,引种后没有自然成活的树苗有
的树苗可经过人工栽培技术处理,处理后成活的概率为
,其余的树苗不能成活.
①求一棵
种树苗最终成活的概率;
②若每棵树苗引种最终成活可获利
元,不成活的每棵亏损
元,该农户为了获利期望不低于
万元,问至少要引种
种树苗多少棵?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是菱形的四棱锥
中,
平面
,
,点
分别为
的中点,设直线
与平面
交于点
.
![]()
(1)已知平面
平面
,求证:
.
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
的前
项和为
,若存在正整数
,且
,使得
,
同时成立,则称数列
为“
数列”.
(1)若首项为
,公差为
的等差数列
是“
数列”,求
的值;
(2)已知数列
为等比数列,公比为
.
①若数列
为“
数列”,
,求
的值;
②若数列
为“
数列”,
,求证:
为奇数,
为偶数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com