精英家教网 > 高中数学 > 题目详情
22、设a>0,函数f(x)=x3-ax在[1,+∞)上是单调函数.
(1)求实数a的取值范围;
(2)设x0≥1,f(x0)≥1,且f(f(x0))=x0,求证:f(x0)=x0
分析:(1)已知函数f(x)=x3-ax在[1,+∞)上是单调函数,故f′(x)≥0或≤0在[1,+∞)上恒成立,用分离参数求最值即可..
(2)结合(1)中的单调性用反证法考虑.
解答:解:(1)f′(x)=3x2-a
若f(x)在[1,+∞)上是单调递减函数,
则须y′≤0,即α≥3x2恒成立,
这样的实数a不存在,
故f(x)在[1,+∞)上不可能是单调递减函数;
若f(x)在[1,+∞)]上是单调递增函数,则a≤3x2恒成立,
由于x∈[1,+∞),故3x2≥3.从而a≤3

(2)(反证法)由(1)可知f(x)在[1,+∞)上只能为单调递增函数.
假设f(x0)≠x0,若1≤x0<F(X0),则F(X0)<F(F(X0))=X0,矛盾; …(8分)
若1≤f(x0)<X0,则F(F(X0))<F(X0),即X0<F(X0),矛盾,…(10分)
故只有f(x0)=x0成立.
点评:本题考查函数单调性的应用:已知单调性求参数范围,及符合函数的求值问题,注意反证法的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0,函数f(x)=x2+a|lnx-1|.
(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;
(2)当x∈[1,+∞)时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,函数f(x)=x3-ax在[1,+∞)上是单调函数.则实数a的取值范围为
(0,3]
(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆模拟)设a>0,函数f(x)=lnx-ax,g(x)=lnx-
2(x-1)x+1

(1)证明:当x>1时,g(x)>0恒成立;
(2)若函数f(x)无零点,求实数a的取值范围;
(3)若函数f(x)有两个相异零点x1、x2,求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,函数f (x) 是定义在(0,+∞)的单调递增的函数且f (
axx-1
)<f(2),试求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,函数f(x)=
12
x2-(a+1)x+a(1+ln x)

(1)求曲线y=f(x)在(2,f(2))处与直线y=-x+1垂直的切线方程;
(2)求函数f(x)的极值.

查看答案和解析>>

同步练习册答案