(2009四川卷理)(本小题满分12分)如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,
(I)求证:;
(II)设线段的中点为,在直线上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
(III)求二面角的大小。
本小题主要考察平面与平面垂直、直线与平面垂直、直线与平面平行、二面角
等基础知识,考察空间想象能力、逻辑推理能力和数学探究意识,考察应用向量知识解决数学问题的能力。
解法一:
(Ⅰ)因为平面⊥平面,平面,
平面平面,
所以⊥平面
所以⊥.
因为为等腰直角三角形, ,
所以
又因为,
所以,
即⊥,
所以⊥平面。 ……………………………………4分
(Ⅱ)存在点,当为线段AE的中点时,PM∥平面
取BE的中点N,连接AN,MN,则MN∥=∥=PC
所以PMNC为平行四边形,所以PM∥CN
因为CN在平面BCE内,PM不在平面BCE内,
所以PM∥平面BCE ……………………………………8分
(Ⅲ)由EA⊥AB,平面ABEF⊥平面ABCD,易知,EA⊥平面ABCD
作FG⊥AB,交BA的延长线于G,则FG∥EA。从而,FG⊥平面ABCD
作GH⊥BD于G,连结FH,则由三垂线定理知,BD⊥FH
因此,∠AEF为二面角F-BD-A的平面角
因为FA=FE, ∠AEF=45°,
所以∠AFE=90°,∠FAG=45°.
设AB=1,则AE=1,AF=.
FG=AF·sinFAG=
在Rt△FGH中,∠GBH=45°,BG=AB+AG=1+=,
GH=BG·sinGBH=·=
在Rt△FGH中,tanFHG= =
故二面角F-BD-A的大小为arctan. ………………………………12分
解法二:
(Ⅰ)因为△ABE为等腰直角三角形,AB=AE,
所以AE⊥AB.
又因为平面ABEF⊥平面ABCD,AE平面ABEF,
平面ABEF∩平面ABCD=AB,
所以AE⊥平面ABCD.
所以AE⊥AD.
因此,AD,AB,AE两两垂直,以A为坐标原点,建立 如图所示的直角坐标系A-xyz.
设AB=1,则AE=1,B(0,1,0),D (1, 0, 0 ) ,
E ( 0, 0, 1 ), C ( 1, 1, 0 ).
因为FA=FE, ∠AEF = 45°,
所以∠AFE= 90°.
从而,.
所以,,.
,.
所以EF⊥BE, EF⊥BC.
因为BE平面BCE,BC∩BE=B ,
所以EF⊥平面BCE.
(Ⅱ) M(0,0,).P(1, ,0).
从而=(,).
于是
所以PM⊥FE,又EF⊥平面BCE,直线PM不在平面BCE内,
故PM∥平面BCE. ………………………………8分
(Ⅲ) 设平面BDF的一个法向量为,并设=(x,y,z)
=(1,1,0),
即
去y=1,则x=1,z=3,从=(0,0,3)
取平面ABD的一个法向量为=(0,0,1)
故二面角F-BD-A的大小为. ……………………………………12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com