【题目】函数f(x)= 其中t>0,若函数g(x)=f[f(x)﹣1]有6个不同的零点,则实数t的取值范围是 .
科目:高中数学 来源: 题型:
【题目】数列{an}定义为a1>0,a11=a,an+1=an+ an2 , n∈N*
(1)若a1= (a>0),求 + +…+ 的值;
(2)当a>0时,定义数列{bn},b1=ak(k≥12),bn+1=﹣1+ ,是否存在正整数i,j(i≤j),使得bi+bj=a+ a2+ ﹣1.如果存在,求出一组(i,j),如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y=2x2 , 直线l:y=kx+2交C于A、B两点,M是AB 的中点,过M作x 轴的垂线交C于N点.
(Ⅰ)证明:抛物线C在N 点处的切线与AB 平行;
(Ⅱ)是否存在实数k,使以AB为直径的圆M经过N点?若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 , .
(1)求函数f(x)的值域;
(2)已知锐角△ABC的两边长a,b分别为函数f(x)的最小值与最大值,且△ABC的外接圆半径为 ,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线l的普通方程为x﹣y﹣2=0,曲线C的参数方程为 (θ为参数),设直线l与曲线C交于A,B两点.若点P在曲线C上运动,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记等差数列{an}的前n项和为Sn .
(1)求证:数列{ }是等差数列;
(2)若a1=1,对任意的n∈N*,n≥2,均有 , , 是公差为1的等差数列,求使 为整数的正整数k的取值集合;
(3)记bn=a (a>0),求证: ≤ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}是各项均为正数的等比数列,其前n项和为Sn , 且a1a5=64,S5﹣S3=48.
(1)求数列{an}的通项公式;
(2)设有正整数m,l(5<m<l),使得am , 5a5 , al成等差数列,求m,l的值;
(3)设k,m,l∈N*,k<m<1,对于给定的k,求三个数 5ak , am , al经适当排序后能构成等差数列的充要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,角A,B,C所对的边分别为a,b,c,且3bsinA=c,D为AC边上一点.
(1)若D是AC的中点,且 , ,求△ABC的最短边的边长.
(2)若c=2b=4,S△BCD= ,求DC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式y=axb(a,b为大于0的常数).现随机抽取6件合格产品,测得数据如下:
尺寸(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
质量(g) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
对数据作了初步处理,相关统计量的值如表:
75.3 | 24.6 | 18.3 | 101.4 |
(Ⅰ)根据所给数据,求y关于x的回归方程;
(Ⅱ)按照某项指标测定,当产品质量与尺寸的比在区间( , )内时为优等品.现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望.
附:对于一组数据(v1 , u1),(v2 , u2),…,(vn , un),其回归直线u=α+βv的斜率和截距的最小二乘估计分别为 = , = ﹣ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com