精英家教网 > 高中数学 > 题目详情

复数z满足i•z=1+z,则z=


  1. A.
    1+i
  2. B.
    1-i
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:设出z=a+bi(a,b∈R),把z代入已知等式后,运用复数相等的条件列式求a,b的值,则复数z可求.
解答:设z=a+bi(a,b∈R),
由i•z=1+z,得:i(a+bi)=1+(a+bi)
整理得:-b+ai=(1+a)+bi.
所以,,解得:a=b=-
所以,
故选C.
点评:本题考查了复数代数形式的乘除运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若复数z满足i•z=1-i(i为虚数单位),则|z|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1、复数z满足i•z=1-2i,则z=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z满足i•z=1+z,则z=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浦东新区二模)已知复数z满足i-z=1-i(其中i为虚数单位),则|z|═
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z满足i•z=1-2i,则z=
 

查看答案和解析>>

同步练习册答案