精英家教网 > 高中数学 > 题目详情

如图,四棱柱ABCD—A1B1C1D1的底面边长和侧棱长都等于2,平面A1ACC1⊥平面ABCD,∠ABC=∠A1AC=60°,点O为底面对角线AC与BD的交点.

  (Ⅰ)证明:A1O⊥平面ABCD;

  (Ⅱ)求二面角D—A1A—C的平面角的正切值.

(1)见解析(2)2


解析:

(Ⅰ)由已知AB=BC=2,∠ABC=60°,则

ABC为正三角形,所以AC=2.                                               

因为点O为AC的中点,则AO=1.

又AA1=2,∠A1AO=60°,

在△A1OA中,由余弦定理,得

.                                   

所以A1O2+AO2=AA12,所以A1O⊥AC.                                        

因为平面AA1C??1C⊥平面ABCD,其交线为AC,

所以A1O⊥平面ABCD.                                                        

(Ⅱ)因为底面ABCD为菱形,则BD⊥AC.又BD⊥A1O,则BD⊥平面A1ACC1.      

过点O作OE⊥AA1垂足为E,连接DE,则AA1⊥DE,

所以∠DEO为二面角D-AA1-C的平面角.                                     

在Rt△AOD中,OD=.                                     

在Rt△AEO中,OE=AO·sin∠EAO=.                                     

在Rt△DOE中,tan∠DEO=.

故二面角D—A1A—C的平面角的正切值为2.                                   

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2.
(Ⅰ)求证:C1D∥平面ABB1A1
(Ⅱ)求直线BD1与平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D-A1C1-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底面边长均为2a,且∠A1AD=∠A1AB=60°,则侧棱AA1和截面B1D1DB的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱A1A=2,
(Ⅰ)证明:AC⊥A1B;
(Ⅱ)若棱AA1上存在一点P,使得
AP
PA1
,当二面角A-B1C1-P的大小为300时,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泉州模拟)如图,四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD.
(Ⅰ)从下列①②③三个条件中选择一个做为AC⊥BD1的充分条件,并给予证明;
①AB⊥BC,②AC⊥BD;③ABCD是平行四边形.
(Ⅱ)设四棱柱ABCD-A1B1C1D1的所有棱长都为1,且∠BAD为锐角,求平面BDD1与平面BC1D1所成锐二面角θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,
AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明B1C1⊥CE;
(Ⅱ)求二面角B1-CE-C1的正弦值.
(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为
2
6
,求线段AM的长.

查看答案和解析>>

同步练习册答案