精英家教网 > 高中数学 > 题目详情

如图,已知直三棱柱分别是棱中点.

⑴ 求证:;       ⑵求四棱锥的体积;

⑶ 判断直线和平面的位置关系,并加以证明.

⑴∵三棱柱是直棱柱,∴平面

又∵平面, ∴

⑵解:∵三棱柱是直棱柱,

平面

又∵平面,∴ .

,∴

,∴平面

是棱的中点,∴

⑶解:平面.证明如下:取的中点,联结

分别是棱中点,∴

又∵,∴

∴四边形是平行四边形, ∴

又∵平面平面, ∴平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1,侧棱长为2,底面△ABC中,∠B=90°,AB=1,BC=
3
,D是侧棱CC1上一点,且BD与底面所成角为30°.
(1)求点D到AB所在直线的距离.
(2)求二面角A1-BD-B1的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,侧面AB1与侧面AC1所成的二面角为60°,M为AA1上的点,∠A1MC1=30°,∠CMC1=90°,AB=a.
(1)求BM与侧面AC1所成角的正切值;
(2)求顶点A到面BMC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1中,AC=BC=2,M,N分别是棱CC1,AB的中点.
(Ⅰ)求证:平面MCN⊥平面ABB1A1
(Ⅱ)求证:CN∥平面AMB1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱A1B1C1-ABC中,D为AB的中点,A1D⊥AB1,且AC=BC,
(1)求证:A1C⊥AB1
(2)若CC1到平面A1ABB1的距离为1,AB1=2
6
A1D=2
3
,求三棱锥A1-ACD的体积;
(3)在(2)的条件下,求点B到平面A1CD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•莒县模拟)如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CCl、AB中点.
(I)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)证明:直线CF∥平面AEBl

查看答案和解析>>

同步练习册答案