精英家教网 > 高中数学 > 题目详情
已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为
3
2
,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12.圆C:x2+y2+2x-4y-20=0的圆心为点A.
(1)求椭圆G的方程;  
(2)求△AF1F2面积;
(3)求经过点(-3,4)且与圆C相切的直线方程;
(4)椭圆G是否在圆C的内部,请说明理由.
分析:(1)利用椭圆的离心率为
3
2
,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12,求出几何量,即可求出椭圆的方程;
(2)确定A的坐标,即可求△AF1F2面积;
(3)确定圆的圆心坐标与半径,即可求经过点(-3,4)且与圆C相切的直线方程;
(4)确定椭圆的顶点(6,0)在圆外,k<0时,(-6,0)在圆Ck外,即可判断椭圆G是否在圆C的内部.
解答:解:(1)设椭圆G的方程为:
x2
a2
+
y2
b2
=1
(a>b>0),半焦距为c,
2a=12
c
a
=
3
2
,解得
a=6
c=3
3
,∴b2=a2-c2=36-27=9
所求椭圆G的方程为:
x2
36
+
y2
9
=1

(2 )点A的坐标为(-1,2),所以 S△AF1F2=
1
2
×F1F2×2=
1
2
×6
3
×2=6
3

(3)由题意,圆C:x2+y2+2x-4y-20=0可化为:(x+1)2+(y-2)2=25,圆心坐标为(-1,2),半径为5,
所以经过点(-3,4)且与圆C相切的直线方程为x=-3,y=4;    
(4)把点(6,0)代入圆C方程可知道,(6,0)在圆C外,
若k<0,由(-6)2+02-12k-0-21=5-12k>0,可知点(-6,0)在圆Ck外,
∴不论k为何值,圆Ck都不能包围椭圆G.
点评:本题考查考查椭圆的标准方程,考查三角形面积的计算,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为
3
2
,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12.圆Ck:x2+y2+2kx-4y-21=0(k∈R)的圆心为点Ak
(1)求椭圆G的方程
(2)求△AkF1F2的面积
(3)问是否存在圆Ck包围椭圆G?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆G的中心在坐标原点,离心率为
5
3
,焦点F1、F2在x轴上,椭圆G上一点N到F1和F2的距离之和为6.
(1)求椭圆G的方程;
(2)若∠F1NF2=90°,求△NF1F2的面积;
(3)若过点M(-2,1)的直线l与椭圆交于A、B两点,且A、B关于点M对称,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)已知椭圆G的中心在坐标原点,焦点在x轴上,一个顶点为A(0,-1),离心率为
6
3

(I)求椭圆G的方程;
(II)设直线y=kx+m与椭圆相交于不同的两点M,N.当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为
3
2
,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程为(  )

查看答案和解析>>

同步练习册答案