| (1)证明:连接A1C1交B1D1于点O1, 在长方体ABCD-A1B1C1D1中,AB⊥平面B1BCC1, AC1在平面B1BCC1内的射影是BC1, 又B1E⊥BC1, ∴AC1⊥B1E, 已知AB=BC=1, ∴底面A1B1C1D1是正方形, ∴A1C1⊥B1D1, 又AC1在平面A1B1C1D1内的射影是A1C1, AA1⊥平面A1B1C1D1, ∴AC1⊥B1D1,B1D1∩B1E=B1, ∴AC1⊥平面B1D1E。 (2)解:连接EO1, 在长方体ABCD-A1B1C1D1中,CC1⊥平面A1B1C1D1, 即EC1⊥平面A1B1C1D1, ∴EO1在平面A1B1C1D1内的射影是C1O1, 又A1C1⊥B1D1,即C1O1⊥B1D1, ∴EO1⊥B1D1, ∴∠EO1C1为二面角E-B1D1-C1的平面角, 在长方形B1BCC1中, BB1= ∠EB1C1=∠C1BB1, ∴直角△EB1C1∽直角△C1BB1, ∴ 即EC1= 在直角△EC1O1,EC1=C1O1= ∴∠EO1C1=45°。 |
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
![]()
A.
B.
C.
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
![]()
A.
B.
C.
D.1
查看答案和解析>>
科目:高中数学 来源:2010-2011年四川省成都市高二3月月考数学试卷 题型:填空题
(文科做)(本题满分14分)如图,在长方体
ABCD—A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1—EC-D的大小为
.
![]()
(理科做)(本题满分14分)
如图,在直三棱柱ABC – A1B1C1中,∠ACB = 90°,CB = 1,
CA =
,AA1 =
,M为侧棱CC1上一点,AM⊥BA1.
(Ⅰ)求证:AM⊥平面A1BC;
(Ⅱ)求二面角B – AM – C的大小;
(Ⅲ)求点C到平面ABM的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com