精英家教网 > 高中数学 > 题目详情
函数,其中,若动直线与函数的图像有三个不同的交点,它们的横坐标分别为,则是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”_______________.
1

试题分析:由,即,解得。即,所以,所以由图象可知要使直线与函数的图像有三个不同的交点,则有,即实数的取值范围是。不妨设,则由题意可知,所以,由,所以,因为,所以,即存在最大值,最大值为1.

点评:本题主要考查数学结合的数学思想。把,然后再利用基本不等式求其最大值,是解题的关键所在。题目难度较大,对学生的要求较高。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)当时,讨论的单调性;
(Ⅱ)设时,若对任意,存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其图象在点 处的切线方程为
(1)求的值;
(2)求函数的单调区间,并求出在区间[-2,4]上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递减区间是        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列四个函数:(1)     (2)     (3)
(4),其中同时满足:① ②对定义域内的任意两个自变量,都有的函数个数为
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于函数,其定义域为 .若对于任意的,总有则称可被置换,那么下列给出的函数中能置换的是 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的奇函数,满足,且在区间上是增函数,若方程在区间上有四个不同的根,则
A.6B.C.18D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的最大值为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,且当的值域是,则的值是
A.B.C.D.

查看答案和解析>>

同步练习册答案