精英家教网 > 高中数学 > 题目详情
已知m,n为两条不同的直线,α,β为两个不同的平面,且n?β,则下列叙述正确的是(  )
A、m∥n,m?α⇒α∥β
B、m∥n,m⊥α⇒α⊥β
C、α⊥β,m⊥n⇒n∥α
D、α∥β,m?α⇒m∥n
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:利用面面平行、面面垂直的判定定理和性质定理分别分析解答.
解答: 解:对于A,m∥n,m?α,n?β,⇒α与β可能相交;故A 错误;
对于B,m∥n,m⊥α⇒n⊥α,又n?β,⇒α⊥β;故B正确;
对于C,n?β,α⊥β,m⊥n⇒n与α可能相交;故C错误;
对于D,n?β,α∥β,m?α⇒m∥n或者异面;故D 错误;
故选B.
点评:本题考查了面面平行、面面垂直的判定定理和性质定理,熟练运用相关的定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

二面角α-l-β内一点P到平面α,β和棱l的距离之比为1:
3
:2,则这个二面角的平面角是
 
度.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出的S值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|(
1
2
)x2-x-6
<1},B={x|log6(x+a)<1}.
(1)若A∪B=R,求实数a的取值范围.
(2)若x∈A是x∈B的必要不充分的条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

空间直角坐标系O-xyz中,已知点B是点A(3,7,-4)在xOz平面上的射影,则
OB
2等于(  )
A、(9,0,16)B、25
C、5D、13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线实轴在x轴,且实轴长为2,离心率e=
3
,L是过定点p(1,1)的直线.
(1)求双曲线的标准方程;
(2)判断L能否与双曲线交于A,B两点,且线段AB恰好以点P为中点,若存在,求出直线L的方程,若不存,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(2x-
1
x
n的展开式中的二项式系数之和比(2x+
1
x
2n的展开式中奇数项的二项式系数之和小112,第二个展开式中二项系数最大项的值为1120,求x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线与抛物线y2=4x的准线分别交于A.,B两点,O为坐标原点,若△AOB的面积为
3
,则双曲线C的离心率为(  )
A、2
B、
3
2
C、
1
2
D、
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
4
-
y2
5
=1的离心率e=(  )
A、
3
2
B、
5
2
C、
3
4
D、
9
4

查看答案和解析>>

同步练习册答案