精英家教网 > 高中数学 > 题目详情
3.在椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$中,满足a2+b2-3c2=0,c是半焦距,则$\frac{a+c}{a-c}$=(  )
A.$3+2\sqrt{2}$B.$3+\sqrt{2}$C.$2+\sqrt{2}$D.$2+2\sqrt{2}$

分析 利用a2=b2+c2及a2+b2-3c2=0求出a、c的数量关系即可.

解答 解:由a2=b2+c2及a2+b2-3c2=0 得a2=2c2⇒a=$\sqrt{2}c$,则$\frac{a+c}{a-c}$=$\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}$,
故选:A.

点评 本题考查了椭圆中a2=b2+c2的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在几何体P-ABCD中,平面ABCD⊥平面PAB,四边形ABCD为矩形,△PAB为正三角形,若AB=2,AD=1,E,F 分别为AC,BP中点.
(Ⅰ)求证EF∥平面PCD;
(Ⅱ)求直线DP与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求y=$\frac{1}{x}$在x=x0处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数$f(x)=\frac{1}{ln(x+1)}+\sqrt{4-x}$的定义域为(-1,0)∪(0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x,y满足$\left\{\begin{array}{l}2x+y≤4\\ x-y≥-1\\ x+2y≥2\end{array}\right.$,则z=x-3y的最小值为(  )
A.-2B.-4C.-5D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.P(x,y)为椭圆$\frac{x^2}{25}+\frac{y^2}{b^2}=1$上任意一点,P到左焦点F1的最大距离为m,最小距离为n,则m+n=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow{m}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow{n}$=(cosωx-sinωx,2sinωx)(ω>0),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,若f(x)相邻两对称轴间的距离不小于$\frac{π}{2}$.
(1)求ω的取值范围;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=2,当ω最大时,f(A)=1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=ax3-3x的图象过点(-1,4),则实数a=(  )
A.-2B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={0,4,5},B={0,1,2},U={0,1,2,3,4,5},则(∁UA)∩B=(  )
A.{1,2}B.{3}C.{0}D.{0,1,2,3}

查看答案和解析>>

同步练习册答案