精英家教网 > 高中数学 > 题目详情
已知直线l:4x+3y+1=0,则与直线l平行,且与两条坐标轴围成的三角形的周长为12的直线l′的方程为
4x+3y±12=0
4x+3y±12=0
分析:根据两条直线平行,得到要求直线的斜率,设出直线的截距,得到直线与坐标轴的两个交点,根据勾股定理得到三角形的斜边,表示出三角形的周长,得到关于截距的方程,解方程得到截距,写出直线的方程.
解答:1解:∵直线l与直线4x+3y+1=0平行,
∴k=-
4
3

设直线l的方程为y=-
4
3
x+b,
则直线l与x轴的交点为A(
3
4
b,0),与y轴的交点为B(0,b),
∴|AB|=
(
3
4
b)
2
+b2
=
5
4
|b|.
∵直线l与两坐标轴围成的三角形周长是15,
∴|
3
4
b|+|b|+|
5
4
b|=12.
∴|b|=4,∴b=±4.
∴直线l的方程是y=-
4
3
x±4,
即4x+3y±12=0.
故答案为:4x+3y±12=0.
点评:本题考查直线的一般式方程与直线的平行关系,考查直线方程的设法,考查直线与坐标轴的交点,是一个基础题,这种题目可以出现在大型考试中.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:4x+3y-8=0(a∈R)过圆C:x2+y2-ax=0的圆心交圆C于A、B两点,O为坐标原点.
(I)求圆C的方程;
(II) 求圆C在点P(1,
3
)处的切线方程;
(III)求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:椭圆C的中心在原点,焦点在x轴上,焦距为8,且经过点(0,3)
(1)求此椭圆的方程
(2)若已知直线l:4x-5y+40=0,问:椭圆C上是否存在一点,使它到直线l的距离最小?最小距离是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:椭圆C的中心在原点,焦点在x轴上,焦距为8,且经过点(0,3)
(1)求此椭圆的方程
(2)若已知直线l:4x-5y+40=0,问:椭圆C上是否存在一点,使它到直线l的距离最小?最小距离是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:椭圆C的中心在原点,焦点在x轴上,焦距为8,且经过点(0,3)
(1)求此椭圆的方程
(2)若已知直线l:4x-5y+40=0,问:椭圆C上是否存在一点,使它到直线l的距离最小?最小距离是多少?

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省长沙市长郡中学高二(下)期末数学试卷(理科)(解析版) 题型:解答题

已知:椭圆C的中心在原点,焦点在x轴上,焦距为8,且经过点(0,3)
(1)求此椭圆的方程
(2)若已知直线l:4x-5y+40=0,问:椭圆C上是否存在一点,使它到直线l的距离最小?最小距离是多少?

查看答案和解析>>

同步练习册答案