分析 (Ⅰ)若A=$\frac{2}{3}$π,利用等面积,结合余弦定理,即可求c;
(Ⅱ)求出2-$\sqrt{3}$≤c≤2+$\sqrt{3}$,即可求c+$\frac{1}{c}$的最大值.
解答 解:(Ⅰ)若A=$\frac{2}{3}$π,则$\frac{1}{2}×c×1×\frac{\sqrt{3}}{2}$=$\frac{1}{2}×a×$$\frac{\sqrt{3}}{6}$a,∴c=$\frac{1}{3}{a}^{2}$
∵a2=$1+{c}^{2}-2×1×c×(-\frac{1}{2})$
∴c=1;
(Ⅱ)$\frac{1}{2}×c×1×sinA$=$\frac{1}{2}×a×$$\frac{\sqrt{3}}{6}$a,∴a2=2$\sqrt{3}$csinA
∵a2=1+c2-2ccosA,
∴sin(A+30°)=$\frac{1+{c}^{2}}{4c}$
∴0<$\frac{1+{c}^{2}}{4c}$≤1,
∴2-$\sqrt{3}$≤c≤2+$\sqrt{3}$,
∴c=2±$\sqrt{3}$时,c+$\frac{1}{c}$的最大值为4.
点评 本题考查余弦定理,考查三角形面积的计算,考查三角函数的性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | a2×${a}^{\frac{1}{2}}$=a | B. | a2÷${a}^{\frac{1}{2}}$=a | C. | (-a)2=-a2 | D. | ${(a}^{2})^{\frac{1}{2}}$=a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\sqrt{2},+∞)$ | B. | (-∞,-1) | C. | (5,+∞) | D. | (-1,5) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com