精英家教网 > 高中数学 > 题目详情
6.在△ABC中,角A、B、C所对的边分别为a、b、c,AD为边BC上的高,已知AD=$\frac{\sqrt{3}}{6}$a,b=1.
(Ⅰ)若A=$\frac{2}{3}$π,求c;
(Ⅱ)求c+$\frac{1}{c}$的最大值.

分析 (Ⅰ)若A=$\frac{2}{3}$π,利用等面积,结合余弦定理,即可求c;
(Ⅱ)求出2-$\sqrt{3}$≤c≤2+$\sqrt{3}$,即可求c+$\frac{1}{c}$的最大值.

解答 解:(Ⅰ)若A=$\frac{2}{3}$π,则$\frac{1}{2}×c×1×\frac{\sqrt{3}}{2}$=$\frac{1}{2}×a×$$\frac{\sqrt{3}}{6}$a,∴c=$\frac{1}{3}{a}^{2}$
∵a2=$1+{c}^{2}-2×1×c×(-\frac{1}{2})$
∴c=1;
(Ⅱ)$\frac{1}{2}×c×1×sinA$=$\frac{1}{2}×a×$$\frac{\sqrt{3}}{6}$a,∴a2=2$\sqrt{3}$csinA
∵a2=1+c2-2ccosA,
∴sin(A+30°)=$\frac{1+{c}^{2}}{4c}$
∴0<$\frac{1+{c}^{2}}{4c}$≤1,
∴2-$\sqrt{3}$≤c≤2+$\sqrt{3}$,
∴c=2±$\sqrt{3}$时,c+$\frac{1}{c}$的最大值为4.

点评 本题考查余弦定理,考查三角形面积的计算,考查三角函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.当x∈[0,$\frac{π}{4}$]时,函数y=tan(2x-$\frac{π}{4}$)的值域为[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=$\frac{x+m}{{x}^{2}+1}$是定义在R上的奇函数,则f(1)+f(-1)+f(m)的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a>0且a≠1下列计算中正确的是(  )
A.a2×${a}^{\frac{1}{2}}$=aB.a2÷${a}^{\frac{1}{2}}$=aC.(-a)2=-a2D.${(a}^{2})^{\frac{1}{2}}$=a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\frac{1}{cosx}$$+\frac{1}{sinx}$的定义域为{x|x≠$\frac{kπ}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线经过点A(-1,2),点B(3,2),则直线的斜率(  )
A.2B.-1C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平面直角坐标系中,点P(-2,5)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上、下顶点分别为A,B,右焦点为F,点P在椭圆C上,且OP⊥AF.
(1)若点P坐标为($\sqrt{3}$,1),求椭圆C的方程;
(2)延长AF交椭圆C于点Q,若直线OP的斜率是直线BQ的斜率的2倍,求椭圆C的离心率;
(3)求证:存在椭圆C,使直线AF平分线段OP.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果方程x2+(2m-3)x+m2-15=0的两个实根一个大于?2,另一个小于-2,那么实数m的取值范围是(  )
A.$(\sqrt{2},+∞)$B.(-∞,-1)C.(5,+∞)D.(-1,5)

查看答案和解析>>

同步练习册答案