精英家教网 > 高中数学 > 题目详情
4.如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=$\frac{π}{3}$,AD=4,AM=2,E是AB的中点
(1)求证:平面MDE⊥平面NDC
(2)求三棱锥N-MDC的体积.

分析 (1)推导出DE⊥CD,ND⊥AD,从而ND⊥DE,进而DE⊥平面NDC,由此能证明平面MAE⊥平面NDC.
(2)由VN-MDC=VM-NDC=VE-NDC,能求出三棱锥N-MDC的体积.

解答 证明:(1)∵ABCD是菱形,∴AD=AB,
∵∠DAB=$\frac{π}{3}$,∴△ABD为等边三角形,
E为AB中点,∴DE⊥AB,∴DE⊥CD,
∵ADMN是矩形,∴ND⊥AD,
又平面ADMN⊥平面ABCD,平面ADMN∩平面ABCD=AD,
∴ND⊥平面ABCD,∴ND⊥DE,
∵CD∩ND=D,∴DE⊥平面NDC,
∵DE?平面MDE,∴平面MAE⊥平面NDC.
解:(2)∵MA∥ND,∴MA∥平面NDC,∴ME∥平面NDC,
∴平面MAE⊥平面NDC,∴ME∥平面NDC,
∴VN-MDC=VM-NDC=VE-NDC
由(1)知DE⊥AB,∠DAE=$\frac{π}{3}$,
∵DA=4,AE=2,∴DE=2$\sqrt{3}$,
∴三棱锥N-MDC的体积VN-MDC=VM-NDC=VE-NDC=$\frac{1}{3}{S}_{△NDC}•DE$=$\frac{8\sqrt{3}}{3}$.

点评 本题考查面面垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知抛物线y2=2px(p>0),过点K(-4,0)作抛物线的两条切线KA,KB,A,B为切点,若AB过抛物线的焦点,△KAB的面积为24,则p的值是(  )
A.12B.-12C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设实数x1、x2是函数$f(x)=|{lnx}|-{({\frac{1}{2}})^x}$的两个零点,则(  )
A.x1x2<0B.0<x1x2<1C.x1x2=1D.x1x2>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f(x)=xsinx,则函数f(x)的导函数f′(x)等于(  )
A.1-sinxB.x-sinxC.sinx+xcosxD.cosx-xsinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={(x,y)|y=$\sqrt{25-{x}^{2}}$,y≠0},N={(x,y)|y=-x+b},若M∩N≠∅,则实数b的取值范围是(  )
A.(-5,5$\sqrt{2}$]B.[-5$\sqrt{2}$,5$\sqrt{2}$]C.[-5,5]D.[-5$\sqrt{2}$,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在区间(0,1)上随机地取两个数,则两数之和小于$\frac{4}{3}$的概率为$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正弦值为$\frac{{\sqrt{15}}}{5}$,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=-lg(x+1)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(1)当定义域为[-1,1],试判断f(x)=x4+x3+x2+x-1是否为“局部奇函数”;
(2)若g(x)=4x-m•2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的范围;
(3)已知a>1,对于任意的$b∈[1,\frac{3}{2}]$,函数h(x)=ln(x+1+a)+x2+x-b都是定义域为[-1,1]上的“局部奇函数”,求实数a的取值范围.

查看答案和解析>>

同步练习册答案