精英家教网 > 高中数学 > 题目详情
(B题)已知椭圆C的中心在坐标原点,焦点在x轴上,长轴长为2
3
,离心率为
3
3

(1)求椭圆C的方程;
(2)设点A(-1,1),过原点O的直线交椭圆于点B,C,求△ABC面积的最大值.
(1)设椭圆C的方程为
x2
a2
+
y2
b2
=1
(a>b>0).
由题意,得
2a=2
3
c
a
=
3
3
,解得
a=
3
c=1
,所以b2=2.
所求的椭圆方程为
x2
3
+
y2
2
=1

(2)当BC垂直于x轴时,因点A(-1,1),|BC|=2
2
S△ABC=
2

当BC不垂直于x轴时,设该直线方程为y=kx,代入
x2
3
+
y2
2
=1
,得x2=
6
2+3k2

|BC|=2
1+k2
|x|=2
6
1+k2
3k2+2
,又点A到BC的距离d=
|1+k|
1+k2

所以S△ABC=
1
2
|BC|
•d=
6
|k+1|
3k2+2
=
6
(k+1)2
3k2+2
=
2
1+
6k+1
3k2+2

设6k+1=t,得S△ABC=
2
1+
12t
t2-2t+25
=
2
1+
12
t+
25
t
-2
5
,此时k=
2
3

综上知当k=
2
3
,时△ABC面积有最大值为
5
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

直线L:y=kx+1与椭圆C:ax2+y2=2(a>1)交于A、B两点,以OA、OB为邻边作平行四边形OAPB(O为坐标原点).
(1)若k=1,且四边形OAPB为矩形,求a的值;
(2)若a=2,当k变化时(k∈R),求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中心,P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(1)建立适当的平面直角坐标系,求双曲线C的方程;
(2)设过点D的直线l与双曲线C相交于不同两点E、F,若△OEF的面积不小于2
2
,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的中心在原点O,其中一条准线方程为x=
3
2
,且与椭圆
x2
25
+
y2
13
=1
有共同的焦点.
(1)求此双曲线的标准方程;
(2)(普通中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,试问:是否存在实数k,使得以弦AB为直径的圆过点O?若存在,求出k的值,若不存在,请说明理由.
(重点中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,C是直线L1:y=mx+6上任一点(A、B、C三点不共线)试问:是否存在实数k,使得△ABC是以AB为底边的等腰三角形?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三点P(5,2)、F1(-6,0)、F2(6,0).
(Ⅰ)求以F1、F2为焦点且过点P的椭圆标准方程;
(Ⅱ)设点P、F1、F2关于直线y=x的对称点分别为P′、F1′、F2′,求以F1′、F2′为焦点且过点P′的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

【理科】已知双曲线的中心在坐标原点O,一条准线方程为x=
3
2
,且与椭圆
x2
25
+
y2
13
=1
有共同的焦点.
(1)求此双曲线的方程;
(2)设直线:y=kx+3与双曲线交于A、B两点,试问:是否存在实数k,使得以弦AB为直径的圆过点O?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,椭圆C的上、下顶点分别为A1,A2,左、右顶点分别为B1,B2,左、右焦点分别为F1,F2.原点到直线A2B2的距离为
2
5
5

(1)求椭圆C的方程;
(2)过原点且斜率为
1
2
的直线l,与椭圆交于E,F点,试判断∠EF2F是锐角、直角还是钝角,并写出理由;
(3)P是椭圆上异于A1,A2的任一点,直线PA1,PA2,分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且|AB|=
8
6
11

(1)求抛物线的方程;
(2)在x轴上是否存在一点C,使△ABC为正三角形?若存在,求出C点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C1x2+y2=
4
5
,直线l:y=x+m(m>0)与圆C1相切,且交椭圆C2
x2
a2
+
y2
b2
=1(a>b>0)
于A1,B1两点,c是椭圆C2的半焦距,c=
3
b

(1)求m的值;
(2)O为坐标原点,若
OA1
OB1
,求椭圆C2的方程;
(3)在(2)的条件下,设椭圆C2的左、右顶点分别为A,B,动点S(x1,y1)∈C2(y1>0)直线AS,BS与直线x=
34
15
分别交于M,N两点,求线段MN的长度的最小值.

查看答案和解析>>

同步练习册答案