设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”.那么,下列命题总成立的是( )
A.若f(1)<1成立,则f(10)<100成立
B.若f(2)<4成立,则f(1)≥1成立
C.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立
D.若f(4)≥25成立,则当k≥4时,均有f(k)≥k2成立
【答案】分析:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”是一种递推关系,前一个数成立,后一个数一定成立,反之不一定成立.
解答:解:对A,因为“原命题成立,否命题不一定成立”,所以若f(1)<1成立,则不一定f(10)<100成立;对B,因为“原命题成立,则逆否命题一定成立”,所以只能得出:若f(2)<4成立,则f(1)<1成立,不能得出:若f(2)<4成立,则f(1)≥1成立;对C,当k=1或2时,不一定有f(k)≥k2成立;对D,∵f(4)≥25≥16,∴对于任意的k≥4,均有f(k)≥k2成立.
故选D
点评:本题主要考查对函数性质的理解,正确理解题意是解决本题的关键.