¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖª°ë¾¶Îª1µÄ¡ÑO1ÓëxÖá½»ÓÚA£¬BÁ½µã£¬OMΪ¡ÑO1µÄÇÐÏߣ¬ÇеãΪM£¬ÇÒMÔÚµÚÒ»ÏóÏÞ£¬Ô²ÐÄO1µÄ×ø±êΪ£¨2£¬0£©£¬¶þ´Îº¯Êýy=-x2+bx+cµÄͼÏó¾­¹ýA£¬BÁ½µã£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÇóÇÐÏßOMµÄº¯Êý½âÎöʽ£»
£¨3£©Ï߶ÎOMÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃÒÔP£¬O£¬AΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷OO1MÏàËÆ£®Èô´æÔÚ£¬ÇëÇó³öËùÓзûºÏÌõ¼þµÄµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÏÈÇó³öA£¬BÁ½µã×ø±ê£¬´úÈ뺯Êý½âÎöʽ£¬¿É¹¹Ôì¹ØÓÚb£¬cµÄ·½³Ì£¬½â·½³Ì¿ÉµÃb£¬cµÄÖµ£¬½ø¶øµÃµ½¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©¸ù¾ÝÔ²ÐÄÇÐÏßOMµÄ¾àÀëµÈÓڰ뾶¹¹Ôì·½³Ì£¬¿ÉÇó³öÇÐÏßµÄбÂÊ£¬½ø¶øµÃµ½ÇÐÏßOMµÄº¯Êý½âÎöʽ
£¨3£©Ï߶ÎOMÉÏ´æÔÚÒ»µãP£¬´ËʱËùµÃÈý½ÇÐαØÒªÖ±½ÇÈý½ÇÐΣ¬¹Ê¹ýµãA×÷AP1¡ÍxÖᣬÓëOM½»ÓÚµãP1£¬¹ýµãA×÷AP2¡ÍOM£¬´¹×ãΪP2£¬¾ùÂú×ãÒªÇó£®
½â´ð£º½â£º£¨1£©¡ßÔ²ÐÄO1µÄ×ø±êΪ£¨2£¬0£©£¬¡ÑO1°ë¾¶Îª1£¬
¡àA£¨1£¬0£©£¬B£¨3£¬0£©¡­£¨1·Ö£©
¡ß¶þ´Îº¯Êýy=-x2+bx+cµÄͼÏó¾­¹ýµãA£¬B£¬
¡à¿ÉµÃ·½³Ì×é
-1+b+c=0
-9+3b+c=0
  ¡­£¨2·Ö£©
½âµÃ£º
b=4
c=-3

¡à¶þ´Îº¯Êý½âÎöʽΪy=-x2+4x-3        ¡­£¨4·Ö£©
£¨2£©ÓÉÌâÒâÒ×ÖªËùÇóÖ±ÏßµÄбÂÊ´æÔÚÇÒ´óÓÚ0£¬
ÉèÇÐÏßOMΪy=kx£¬£¨k£¾0£©
Óɵ㵽ֱÏߵľàÀëd=r£¬¿ÉµÃ
|2k|
k2+1
=1                   ¡­£¨6·Ö£©
½âµÃk=
3
3
»òk=-
3
3
£¨ÉáÈ¥£©
¡àÇÐÏßOMµÄº¯Êý½âÎöʽΪy=
3
3
x¡­£¨8·Ö£©
£¨3£©´æÔÚ£®
¢Ù¹ýµãA×÷AP1¡ÍxÖᣬÓëOM½»ÓÚµãP1£®
¿ÉµÃRt¡÷AP1O¡×Rt¡÷MO1O
ÔòÓÉ
y=
3
3
x
x=1
£¬½âµÃ
y=
3
3
x=1

¡àµãP1µÄ×ø±êΪ£¨1£¬
3
3
£©          ¡­£¨11·Ö£©
¢Ú¹ýµãA×÷AP2¡ÍOM£¬´¹×ãΪP2£¬¿ÉµÃRt¡÷AP2O¡×Rt¡÷O1MO
ÔòÓÉ
y=
3
3
x
y=
-1
kOM
(x-1)
£¬½âµÃ
y=
3
4
x=
3
4

¡àP2µãµÄ×ø±êΪ£¨
3
4
£¬
3
4
£©
¡à·ûºÏÌõ¼þµÄPµã×ø±êÓУ¨1£¬
3
3
£©£¬£¨
3
4
£¬
3
4
£©          ¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊǶþ´Îº¯ÊýµÄ½âÎöʽ£¬Ö±ÏßÓëÔ²µÄλÖùØϵ£¬Èý½ÇÐÎÏàËÆ£¬Ö±ÏߵĽ»µãµÈÎÊÌ⣬ÊǽâÎö¼¸ºÎµÄ×ÛºÏÓ¦Óã¬ÄѶȲ»´ó£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖª°ë¾¶ÎªrµÄÔ²MµÄÄÚ½ÓËıßÐÎABCDµÄ¶Ô½ÇÏßACºÍBDÏ໥´¹Ö±ÇÒ½»µãΪP£®
¾«Ó¢¼Ò½ÌÍø
£¨1£©ÈôËıßÐÎABCDÖеÄÒ»Ìõ¶Ô½ÇÏßACµÄ³¤¶ÈΪd£¨0£¼d£¼2r£©£¬ÊÔÇó£ºËıßÐÎABCDÃæ»ýµÄ×î´óÖµ£»
£¨2£©ÊÔ̽¾¿£ºµ±µãPÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬ËıßÐÎABCDµÄÃæ»ýÈ¡µÃ×î´óÖµ£¬×î´óֵΪ¶àÉÙ£¿
£¨3£©¶ÔÓÚ֮ǰСÌâµÄÑо¿½áÂÛ£¬ÎÒÃÇ¿ÉÒÔ½«ÆäÀà±Èµ½ÍÖÔ²µÄÇéÐΣ®Èçͼ2£¬ÉèƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÍÖÔ²¦££º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄÄÚ½ÓËıßÐÎABCDµÄ¶Ô½ÇÏßACºÍBDÏ໥´¹Ö±ÇÒ½»ÓÚµãP£®ÊÔÌá³öÒ»¸öÓÉÀà±È»ñµÃµÄ²ÂÏ룬²¢³¢ÊÔ¸øÓèÖ¤Ã÷»ò·´Àý·ñ¶¨£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖª°ë¾¶Îª1µÄ¡ÑO1ÓëÖá½»ÓÚÁ½µã£¬Îª¡ÑO1µÄÇÐÏߣ¬ÇеãΪ£¬ÇÒÔÚµÚÒ»ÏóÏÞ£¬Ô²ÐĵÄ×ø±êΪ£¬¶þ´Îº¯ÊýµÄͼÏó¾­¹ýÁ½µã£®

£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»

£¨2£©ÇóÇÐÏߵĺ¯Êý½âÎöʽ£»

£¨3£©Ï߶ÎÉÏÊÇ·ñ´æÔÚÒ»µã£¬Ê¹µÃÒÔΪ¶¥µãµÄÈý½ÇÐÎÓëÏàËÆ£®Èô´æÔÚ£¬ÇëÇó³öËùÓзûºÏÌõ¼þµÄµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011ÄêÉϺ£ÆÕÍÓÇø¸ß¿¼ÊýѧÈýÄ£ÊÔ¾í£¨ÎÄÀíºÏ¾í£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖª°ë¾¶ÎªrµÄÔ²MµÄÄÚ½ÓËıßÐÎABCDµÄ¶Ô½ÇÏßACºÍBDÏ໥´¹Ö±ÇÒ½»µãΪP£®

£¨1£©ÈôËıßÐÎABCDÖеÄÒ»Ìõ¶Ô½ÇÏßACµÄ³¤¶ÈΪd£¨0£¼d£¼2r£©£¬ÊÔÇó£ºËıßÐÎABCDÃæ»ýµÄ×î´óÖµ£»
£¨2£©ÊÔ̽¾¿£ºµ±µãPÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬ËıßÐÎABCDµÄÃæ»ýÈ¡µÃ×î´óÖµ£¬×î´óֵΪ¶àÉÙ£¿
£¨3£©¶ÔÓÚ֮ǰСÌâµÄÑо¿½áÂÛ£¬ÎÒÃÇ¿ÉÒÔ½«ÆäÀà±Èµ½ÍÖÔ²µÄÇéÐΣ®Èçͼ2£¬ÉèƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÍÖÔ²£¨a£¾b£¾0£©µÄÄÚ½ÓËıßÐÎABCDµÄ¶Ô½ÇÏßACºÍBDÏ໥´¹Ö±ÇÒ½»ÓÚµãP£®ÊÔÌá³öÒ»¸öÓÉÀà±È»ñµÃµÄ²ÂÏ룬²¢³¢ÊÔ¸øÓèÖ¤Ã÷»ò·´Àý·ñ¶¨£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011ÄêÉϺ£ÊÐÆÕÍÓÇø¸ß¿¼Êýѧ¶þÄ£ÊÔ¾í£¨ÎÄÀíºÏ¾í£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖª°ë¾¶ÎªrµÄÔ²MµÄÄÚ½ÓËıßÐÎABCDµÄ¶Ô½ÇÏßACºÍBDÏ໥´¹Ö±ÇÒ½»µãΪP£®

£¨1£©ÈôËıßÐÎABCDÖеÄÒ»Ìõ¶Ô½ÇÏßACµÄ³¤¶ÈΪd£¨0£¼d£¼2r£©£¬ÊÔÇó£ºËıßÐÎABCDÃæ»ýµÄ×î´óÖµ£»
£¨2£©ÊÔ̽¾¿£ºµ±µãPÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬ËıßÐÎABCDµÄÃæ»ýÈ¡µÃ×î´óÖµ£¬×î´óֵΪ¶àÉÙ£¿
£¨3£©¶ÔÓÚ֮ǰСÌâµÄÑо¿½áÂÛ£¬ÎÒÃÇ¿ÉÒÔ½«ÆäÀà±Èµ½ÍÖÔ²µÄÇéÐΣ®Èçͼ2£¬ÉèƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÍÖÔ²£¨a£¾b£¾0£©µÄÄÚ½ÓËıßÐÎABCDµÄ¶Ô½ÇÏßACºÍBDÏ໥´¹Ö±ÇÒ½»ÓÚµãP£®ÊÔÌá³öÒ»¸öÓÉÀà±È»ñµÃµÄ²ÂÏ룬²¢³¢ÊÔ¸øÓèÖ¤Ã÷»ò·´Àý·ñ¶¨£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸