精英家教网 > 高中数学 > 题目详情

一个袋子中装有7个小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为2,4,6,从袋子中任取4个小球(假设取到任一小球的可能性相等).
(1)求取出的小球中有相同编号的概率;
(2)记取出的小球的最大编号为,求随机变量的分布列和数学期望.

(1)
(2)随机变量的分布列为:


3
4
6




随机变量的数学期望 .

解析试题分析:(1)应用古典概型概率的计算公式,关键是利用组合知识,确定事件数;
(2) 随机变量的可能取值为.
计算相应概率即得随机变量的分布列为:


3
4
6




数学期望 .
试题解析:(1):设取出的小球中有相同编号的事件为
编号相同可分成一个相同和两个相同                               2分
                                   4分
(2) 随机变量的可能取值为:3,4,6                  6分
 ,                                          7分
,                                    8分
                         9分
所以随机变量的分布列为:

3
4
6




        10分
所以随机变量的数学期望 .    &

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

若一批白炽灯共有10000只,其光通量X服从正态分布,其正态分布密度函数是f(x)=,x∈(-∞,+∞),试求光通量在下列范围内的灯泡的个数.
(1)(203,215);(2)(191,227).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从1,2,3,4,5,6中不放回地随机抽取四个数字,记取得的四个数字之和除以4的余数为,除以3的余数为
(1)求X=2的概率;
(2)记事件为事件,事件为事件,判断事件与事件是否相互独立,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.

(1)写出数量积X的所有可能取值;
(2)分别求小波去下棋的概率和不去唱歌的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下:
甲运动员

射击环数
频数
频率
7
10
0.1
8
10
0.1
9
x
0.45
10
35
y
合计
100
1
乙运动员
射击环数
频数
频率
7
8
0.1
8
12
0.15
9
z
 
10
 
0.35
合计
80
1
若将频率视为概率,回答下列问题:
(1)求甲运动员射击1次击中10环的概率.
(2)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率.
(3)若甲运动员射击2次,乙运动员射击1次,ξ表示这3次射击中击中9环以上(含9环)的次数,求ξ的分布列及E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:

产品编号
A1
A2
A3
A4
A5
质量指标(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
 
 
 
 
 
 
产品编号
A6
A7
A8
A9
A10
质量指标(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(1)利用上表提供的样本数据估计该批产品的一等品率;
(2)在该样本的一等品中,随机抽取2件产品,
①用产品编号列出所有可能的结果;
②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,乙在每局中获胜的概率为,且各局胜负相互独立,比赛停止时一共已打局:
(1)列出随机变量的分布列;
(2)求的期望值E

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.
(1)求X的分布列;
(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知关于x的一元二次方程x2-2(a-2)x-b2+16=0.
(1)若a、b是一枚骰子掷两次所得到的点数,求方程有两正根的概率;
(2)若a∈[2,4],b∈[0,6],求方程没有实根的概率.

查看答案和解析>>

同步练习册答案