精英家教网 > 高中数学 > 题目详情
已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)
分析:(1)把a1=
5
4
代入an+1=|an-1|分别求得a2,a3,a4,推断出n≥2数列中偶数项为
1
4
,奇数项为
3
4
,进而推断出数列的通项公式.
(2)根据a1=a可分别求得a2和a3,同理可求得ak+1,ak+2,ak+3,ak+4进而求得a3k和a3k-1最后相加,利用等差数列的求和公式求得答案.
解答:解:(1)a1=
5
4
a2=
1
4
a3=
3
4
a4=
1
4

a1=
5
4
,n≥2时,an=
1
4
,n=2k
3
4
,n=2k+1
,其中k∈N*

(2)当a1=a∈(k,k+1),(k∈N*)时,
易知a2=a-1,
a3=a-2ak=a-(k-1);
ak+1=a-k∈(0,1);
ak+2=1-ak+1=k+1-a;
ak+3=1-ak+2=a-k;
ak+4=1-ak+3=k+1-a
a3k-1=a-k,
a3k=k+1-a;
S3k=a1+a2+…+ak+ak+1+ak+2+ak+3+ak+4+…+a3k-1+a3k
=a+(a-1)+(a-2)+…+a-(k-1)+k
=ka+k-
1+k-1
2
(k-1)

=-
k2
2
+k(a+
3
2
)
点评:本题主要考查了数列的递推式.考查了学生推理分析和基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案