¶ÔÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©£®¶ÔÕýÕûÊýk£¬¹æ¶¨ {¡÷kan}Ϊ{an}µÄk½×²î·ÖÊýÁУ¬ÆäÖС÷kan=¡÷k-1an+1-¡÷k-1an=¡÷£¨¡÷k-1an£©£®
£¨¢ñ£©ÈôÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒÂú×ã¡÷2an-¡÷an+1+an=-2n£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©¶Ô£¨¢ñ£©ÖеÄÊýÁÐ{an}£¬ÈôÊýÁÐ{bn}ÊǵȲîÊýÁУ¬Ê¹µÃb1Cn1+b2Cn2+b3Cn3+¡­+bn-1Cnn-1+bnCnn=an¶ÔÒ»ÇÐÕýÕûÊýn¡ÊN*¶¼³ÉÁ¢£¬Çóbn£»
£¨¢ó£© ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬Áîcn=£¨2n-1£©bn£¬ÉèTn=
c1
a1
+
c2
a2
+
c3
a3
+¡­+
cn
an
£¬ÈôTn£¼m³ÉÁ¢£¬Çó×îСÕýÕûÊýmµÄÖµ£®
£¨¢ñ£©ÓÉ¡÷2an-¡÷an+1+an=-2n¼°¡÷2an=¡÷an+1-¡÷an£¬
µÃ¡÷an-an=2n£¬
¡àan+1-2an=2n£¬
¡à
an+1
2n+1
-
an
2n
=
1
2
£¬---------------£¨2·Ö£©
¡àÊýÁÐ{
an
2n
}
ÊÇÊ×ÏîΪ
1
2
£¬¹«²îΪ
1
2
µÄµÈ²îÊýÁУ¬
¡à
an
2n
=
1
2
+(n-1)¡Á
1
2
£¬
¡àan=n•2n-1£®--------£¨4·Ö£©
£¨¢ò£©¡ßb1Cn1+b2Cn2+b3Cn3+¡­+bn-1Cnn-1+bnCnn=an£¬
¡àb1Cn1+b2Cn2+b3Cn3+¡­+bn-1Cnn-1+bnCnn=n•2n-1£®
¡ßkCnk=nCn-1k-1£¬
¡à
C1n
+2
C2n
+3
C3n
+¡­+(n-1)
Cn-1n
+n
Cnn
=n
C0n-1
+n
C1n-1
+n
C2n-1
+¡­+n
Cn-1n-1
=n(
C0n-1
+
C1n-1
+
C2n-1
+¡­+
Cn-1n-1
)=n•2n-1.

¡àbn=n£®------------£¨9·Ö£©
£¨¢ó£©ÓÉ£¨¢ò£©µÃ  
Tn=
1
1
+
3
2
+
5
22
+¡­+
2n-1
2n-1
£¬¢Ù
  
1
2
Tn=
1
2
+
3
22
+
5
23
+¡­+
2n-1
2n
£¬¢Ú
¢Ù-¢ÚµÃ 
1
2
Tn=1+1+
1
2
+
1
22
+
1
23
+¡­+
1
2n-2
-
2n-1
2n
=3-
1
2n-2
-
2n-1
2n
£¬
¡àTn=6-
1
2n-3
-
2n-1
2n-1
£¼6£¬----------£¨10·Ö£©
ÓÖTn=
1
1
+
3
2
+
5
22
+¡­+
2n-1
2n-1
£¬
¡àTn+1-Tn£¾0£¬
¡à{Tn}ÊǵÝÔöÊýÁУ¬ÇÒT6=6-
1
23
-
11
25
£¾5£¬
¡àÂú×ãÌõ¼þµÄ×îСÕýÕûÊýmµÄֵΪ6£®--------£¨13·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

8¡¢¶ÔÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN£©£®¶Ô×ÔÈ»Êýk£¬¹æ¶¨{¡÷kan}Ϊ{an}µÄk½×²î·ÖÊýÁУ¬ÆäÖС÷kan=¡÷k-1an+1-¡÷k-1an=¡÷£¨¡÷k-1an£©£®
£¨1£©ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=n2+n£¨n¡ÊN£©£¬£¬ÊÔÅжÏ{¡÷an}£¬{¡÷2an}ÊÇ·ñΪµÈ²î»òµÈ±ÈÊýÁУ¬ÎªÊ²Ã´£¿
£¨2£©ÈôÊýÁÐ{an}Ê×Ïîa1=1£¬ÇÒÂú×ã¡÷2an-¡÷an+1+an=-2n£¨n¡ÊN£©£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®
£¨3£©£¨Àí£©¶Ô£¨2£©ÖÐÊýÁÐ{an}£¬ÊÇ·ñ´æÔڵȲîÊýÁÐ{bn}£¬Ê¹µÃb1Cn1+b2Cn2+¡­+bnCnn=an¶ÔÒ»ÇÐ×ÔÈ»n¡ÊN¶¼³ÉÁ¢£¿Èô´æÔÚ£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»Èô²»´æÔÚ£¬ÔòÇë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©£»Ò»°ãµØ£¬¹æ¶¨{¡÷kan} ÎªÊýÁÐ{an}µÄk½×²î·ÖÊýÁУ¬ÆäÖС÷kan=¡÷k-1an+1-¡÷k-1an£¨k¡ÊN*£¬k¡Ý2£©£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=n2+n£¨n¡ÊN*£©£¬ÔòÒÔϽáÂÛÕýÈ·µÄÐòºÅΪ
¢Ù¢Ü
¢Ù¢Ü
£®
¢Ù¡÷an=2n+2£»       
¢ÚÊýÁÐ{¡÷3an}¼ÈÊǵȲîÊýÁУ¬ÓÖÊǵȱÈÊýÁУ»
¢ÛÊýÁÐ{¡÷an}µÄǰnÏîÖ®ºÍΪan=n2+n£»   
¢Ü{¡÷2an}µÄǰ2014ÏîÖ®ºÍΪ4028£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©£»Ò»°ãµØ£¬¹æ¶¨{¡÷kan}ΪÊýÁÐ{an}µÄk½×²î·ÖÊýÁУ¬ÆäÖС÷kan=¡÷k-1an+1-¡÷k-1an£¨k¡ÊN*£¬k¡Ý2£©£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=n2+n£¨n¡ÊN*£©£¬ÔòÒÔϽáÂÛÕýÈ·µÄÐòºÅΪ
¢Ù¢Ü
¢Ù¢Ü
£®
¢Ù¡÷an=2n+24£»       
¢ÚÊýÁÐ{¡÷3an}¼ÈÊǵȲîÊýÁУ¬ÓÖÊǵȱÈÊýÁУ»
¢ÛÊýÁÐ{¡÷an}µÄǰnÏîÖ®ºÍΪan=n2+n£»   
¢Ü{¡÷2an}µÄǰ2014ÏîÖ®ºÍΪ4028£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÊýÁÐ{an}£¬¹æ¶¨{Van}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖÐVan=an+1-an£¨n¡ÊN*£©£®¶ÔÕýÕûÊýk£¬¹æ¶¨{Vkan}Ϊ{an}µÄk½×²î·ÖÊýÁУ¬ÆäÖÐVkan=Vk-1an+1-Vk-1an=V£¨VK-1an£©£¨¹æ¶¨V0an=an£©£®
£¨¢ñ£©ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=n2+n£¨n¡ÊN*£©£¬ÊÇÅжÏ{Van}ÊÇ·ñΪµÈ²îÊýÁУ¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©ÈôÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒÂú×ãV2an-Van+1+an=-2n£¨n¡ÊN*£©£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¹ðÁÖһ죩¶ÔÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©£®¹æ¶¨{¡÷2an}Ϊ{an}µÄ¶þ½×²î·ÖÊýÁУ¬ÆäÖС÷2an=¡÷an+1-¡÷an£®
£¨¢ñ£©ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=n2+n(n¡ÊN*)£¬ÊÔÅжÏ{¡÷an}£¬{¡÷2an}ÊÇ·ñΪµÈ²î»òµÈ±ÈÊýÁУ¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©ÈôÊýÁÐ{an}Ê×Ïîa1=1£¬ÇÒÂú×ã¡÷2an-¡÷an+1+an=-2n(n¡ÊN*)£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸