精英家教网 > 高中数学 > 题目详情

已知F是抛物线y2=x的焦点,AB是该抛物线上的两点,,则线
AB的中点到y轴的距离为

A.B.1C.D.

C

解析考点:抛物线的定义.
分析:根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标,求出线段AB的中点到y轴的距离.
解答:解:∵F是抛物线y2=x他焦点
F(,n)准线方程x=-
设A(x1,y1),B(x2,y2
∴|AF|+|BF|=x1++x2+=3
解得x1+x2=
∴线段AB他3点横坐标为
∴线段AB他3点到y轴他距离为
故答案为:C.
点评:本题主要考查抛物线的定义、标准方程,以及简单性质的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为(  )
A、
3
4
B、1
C、
5
4
D、
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是抛物线y2=4x的焦点,A,B是抛物线上两点,△AFB是正三角形,则该正三角形的边长为
8±4
3
8±4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)已知F是抛物线y2=4x的焦点,Q是抛物线的准线与x轴的交点,直线l经过点Q.
(Ⅰ)若直线l与抛物线恰有一个交点,求l的方程;
(Ⅱ)如题20图,直线l与抛物线交于A、B两点,
(ⅰ)记直线FA、FB的斜率分别为k1、k2,求k1+k2的值;
(ⅱ)若线段AB上一点R满足
|AR|
|RB|
=
|AQ|
|QB|
,求点R的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点.若线段AB的中点到y轴的距离为
5
4
,则|AF|+|BF|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是抛物线y2=4x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=5,则线段AB的中点到该抛物线准线的距离为(  )

查看答案和解析>>

同步练习册答案