精英家教网 > 高中数学 > 题目详情
设α∈(-
π
2
,0),cos(π+α)=-
4
5
,则tanα=(  )
分析:由题意可得sin(π+α)=
3
5
,tan(π+α)=
sin(π+α)
cos(π+α)
=-
3
4
,从而求得 tanα 的值.
解答:解:由题意可得
π
2
<π+α<π,∵cos(π+α)=-
4
5
,则 sin(π+α)=
3
5

故有tan(π+α)=
sin(π+α)
cos(π+α)
=
3
5
-
4
5
=-
3
4
,∴tanα=-
3
4

故选C.
点评:本题主要考查同角三角函数的基本关系、诱导公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(x,y)的坐标满足
x-4y+3≤0
3x+5y≤25
x-1≥0
设A(2,0),则|
OP
|cos∠AOP
(O为坐标原点)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别是椭圆
x2
4
+y2=1的左、右焦点.
(1)若P是该椭圆上的一个动点,求向量乘积
PF1
PF2
的取值范围;
(2)设过定点M(0,2)的直线l与椭圆交于不同的两点M、N,且∠MON为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(3)设A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.求四边形AEBF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=eλx+(1-λ)a-λex,其中α,λ,是常数,且0<λ<1.
(I)求函数f(x)的极值;
(II)对任意给定的正实数a,是否存在正数x,使不等式|
ex-1x
-1
|<a成立?若存在,求出x,若不存在,说明理由;
(III)设λ1,λ2∈(0,+∞),且λ12=1,证明:对任意正数a1,a2都有:a1λ1a2λ2≤λ1a12a2

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={-2,0,1,3},B={0,2,3,4},则A∩B=
{0,3}
{0,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知极坐标系的极点在直角坐标系的原点,极轴与x轴的非负半轴重合.曲线C1的极坐标方程为ρsin2θ=2cosθ,曲线C2的参数方程为
x=2+tcosα
y=tsinα
(t为参数).
(1)求曲线C1的直角坐标方程及α=
π
3
时曲线C2的普通方程;
(2)设E(2,0),曲线C1与C2交于点M、N,若ME=2NE,求MN的长.

查看答案和解析>>

同步练习册答案