精英家教网 > 高中数学 > 题目详情
15.若向量$\vec a、\vec b$的夹角为150°,$|{\;\vec a\;}|=\sqrt{3},|{\;\vec b\;}$|=4,则$|{\;2\vec a+\vec b\;}$|=2.

分析 利用数量积运算性质即可得出.

解答 解:$\overrightarrow{a}•\overrightarrow{b}$=$\sqrt{3}×4cos15{0}^{°}$=-6.
∴$|{\;2\vec a+\vec b\;}$|=$\sqrt{4{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}}$=$\sqrt{4×3+4×(-6)+{4}^{2}}$=2.
故答案为:2.

点评 本题考查了数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.极坐标方程为ρ=2cosθ和ρ=4sinθ的两个圆的圆心距离为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.经统计知,某小区有小汽车的家庭有35家,有电动车自行车的家庭有65家,既有小汽车又有电动自行车的家庭有20家,则小汽车和电动自行车至少有一种的家庭数为(  )
A.60B.80C.100D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知D、E分别为△ABC边AB、AC的中点,F是线段DE上一点,BF交AC于点C,CF交AB于点H,求$\frac{AG}{GC}+\frac{AH}{HB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)是定义域为R的非零函数,设函数F(x)=f(x)$+\frac{1}{x}$.
(1)若f(x)为奇函数,试用定义证明:F(x)为奇函数;
(2)若f(x)为偶函数,试判断F(x)的奇偶性,并说明理由;
(3)若f(x)为奇函数,且在区间(-∞,0)上单调递减,试判断F(x)在区间(0,+∞)上的单调性,并用单调性的定义给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一组数据的平均数、众数和方差都是2,则这组数可以是(  )
A.2,2,3,1B.2,3,-1,2,4C.2,2,2,2,2,2D.2,4,0,2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒.某人开车到这个路口时,恰好为绿灯的概率为(  )
A.$\frac{2}{5}$B.$\frac{8}{15}$C.$\frac{1}{3}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知Sn是等差数列{an}的前n项和,且a4=15,S5=55,求过点P(3,a3)、Q(4,a4)的直线的斜率;
(2)设等比数列{bn}的公比q=3,前n项和为Tn,求$\frac{T_4}{b_2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.对不同的实数值m,讨论直线y=x+m与椭圆$\frac{{x}^{2}}{4}$+y2=1的位置关系.

查看答案和解析>>

同步练习册答案