精英家教网 > 高中数学 > 题目详情
设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定义域.
(2)求f(x)在区间[0,
32
]上的值域.
分析:(1)由f(1)=2求得a的值,由对数的真数大于0求得f(x)的定义域;
(2)判定f(x)在(-1,3)上的增减性,求出f(x)在[0,
3
2
]上的最值,即得值域.
解答:解:(1)∵f(x)=loga(1+x)+loga(3-x),
∴f(1)=loga2+loga2=loga4=2,∴a=2;
又∵
1+x>0
3-x>0
,∴x∈(-1,3),
∴f(x)的定义域为(-1,3).
(2)∵f(x)=log2(1+x)+log2(3-x)=log2[(1+x)(3-x)]=log2[-(x-1)2+4],
∴当x∈(-1,1]时,f(x)是增函数;
当x∈(1,3)时,f(x)是减函数,
∴f(x)在[0,
3
2
]上的最大值是f(1)=log24=2;
又∵f(0)=log23,f(
3
2
)=log2
15
4
=-2+log215,
∴f(0)<f(
3
2
);
∴f(x)在[0,
3
2
]上的最小值是f(0)=log23;
∴f(x)在区间[0,
3
2
]上的值域是[log23,2].
点评:本题考查了求函数的定义域和值域的问题,利用对数函数的真数大于0可求得定义域,利用函数的单调性可求得值域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=loga(x-2a)+loga(x-3a),其中a>0且a≠1.
(1)已知f(4a)=1,求a的值;
(2)若在区间[a+3,a+4]上f(x)≤1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定义域;
(2)求f(x)在区间[0,
32
]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=loga(x+1),g(x)=loga(t-x),a>0且a≠1,且F(x)=f(x)-g(x)是奇函数.
(1)若a=2,解关于x的不等式f(x)-1>loga
x-1x-2

(2)判断F(x)的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=loga(x+1),g(x)=loga(t-x),a>0且a≠1,且F(x)=f(x)-g(x)是奇函数.
(1)若a=2,解关于x的不等式数学公式
(2)判断F(x)的单调性,并证明.

查看答案和解析>>

同步练习册答案