精英家教网 > 高中数学 > 题目详情
从某学校高三年级共800名男生中随机抽取50名测量身高,据测量被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组;第一组[155,160)、第二组[160,165);…第八组[190,195),如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
(1)求第六组、第七组的频率.
(2)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x-y|≤5的事件概率.
分析:(1)由直方图求出前五组的频率,进一步得到后三组的频率,然后求出后三组的人数和,再由第八组的频率求出第八组的人数,设出第六组的人数m,得到第七组的人数,由等差中项的概念得到关于m的等式,继而求出m,则第六组、第七组的频率可求;
(2)分别求出身高在[180,185)内和在[190,195)的人数,标号后利用列举法写出从中随机抽取两名男生的所有情况,查出满足|x-y|≤5的事件个数,然后利用古典概型概率计算公式求解.
解答:解:(1)由直方图知,前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,
后三组频率为1-0.82=0.18,人数为0.18×50=9(人),
由直方图得第八组频率为:0.008×5=0.04,人数为0.04×50=2(人),
设第六组人数为m,则第七组人数为9-2-m=7-m,又第六组、第七组、第八组人数依次构成等差数列,
∴m+2=2(7-m),∴m=4.
∴第六组人数为4人,第七组人数为3人,频率分别等于
4
50
=0.08,
3
50
=0.06.
(2)由(1)知身高在[180,185)内的人数为4人,设为a,b,c,d.身高在[190,195)的人数为2人,设为A,B.
若x,y∈[180,185)时,有ab,ac,ad,bc,bd,cd共六种情况.
若x,y∈[190,195)时,有AB共一种情况.
若x,y分别在[180,185)和[190,195)内时,
有aA,bA,cA,dA,aB,bB,cB,dB共8种情况,
∴基本事件总数为6+8+1=15种,
事件|x-y|≤5所包含的基本事件个数有6+1=7种.
∴P(|x-y|≤5)=
7
15
点评:本题考查了频率分布直方图,考查了古典概型及其概率计算公式,考查了学生的读图能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•惠州模拟)某中学在校就餐的高一年级学生有440名,高二年级学生有460名,高三年级学生有500名;为了解学校食堂的服务质量情况,用分层抽样的方法从中抽取70名学生进行抽样调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级:1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如下表(服务满意度为x,价格满意度为y).

人数             y
x
价格满意度
1 2 3 4 5




1 1 1 2 2 0
2 2 1 3 4 1
3 3 7 8 8 4
4 1 4 6 4 1
5 0 1 2 3 1
(1)求高二年级共抽取学生人数;
(2)求“服务满意度”为3时的5个“价格满意度”数据的方差;
(3)为提高食堂服务质量,现从x<3且2≤y<4的所有学生中随机抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.

查看答案和解析>>

同步练习册答案