精英家教网 > 高中数学 > 题目详情
已知函数
(1)当时,求函数的值域;
(2)若关于的方程有解,求的取值范围.
(1)值域为 ;(2)的取值范围为.

试题分析:(1)当时,是个指数形式的函数,求其值域为可以使用换元法求解,令,将转化为关于的二次函数形式,,根据二次函数在给定区间上求解即可.易错点:要注意定义域的变化,其中的取值范围为的值域.
(2)问有解,求得取值范围,可使用分离参数法,,保证函数和函数有交点即可,既是求函数的值域,求值域的方法是先换元后配方,但要注意定义域的变化,求出函数的值域为,即是内,则.
试题解析:
(1)当时,,令,则,因而,故值域为 .
(2)方法一:由;由题意可知有交点即可.
,得则得,所以的取值范围为.
方法二:方程有解,令,则原题意等价于有解,
,当时,得,不成立;当时,根据根的分布的.
方法三:方程有解,令,则原题意等价于有解,即:的值域就是的取值范围,所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

记数列{}的前n项和为为,且+n=0(n∈N*)恒成立.
(1)求证:数列是等比数列;
(2)已知2是函数f(x)=+ax-1的零点,若关于x的不等式f(x)≥对任意n∈N﹡在x∈(-∞,λ]上恒成立,求实常数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

停车场预计“十·一”国庆节这天将停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.根据预计,解答下面的问题:
(1)写出国庆节这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出自变量x的取值范围;
(2)如果国庆节这天停放的小车辆次占停车总辆次的65%~85%,请你估计国庆节这天该停车场收费金额的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

相关部门对跳水运动员进行达标定级考核,动作自选,并规定完成动作成绩在八分及以上的定为达标,成绩在九分及以上的定为一级运动员. 已知参加此次考核的共有56名运动员.
(1)考核结束后,从参加考核的运动员中随机抽取了8人,发现这8人中有2人没有达标,有3人为一级运动员,据此请估计此次考核的达标率及被定为一级运动员的人数;
(2)经过考核,决定从其中的A、B、C、D、E五名一级运动员中任选2名参加跳水比赛(这五位运动员每位被选中的可能性相同). 写出所有可能情况,并求运动员E被选中的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域为R的函数,若关于的方程有3个不同实数解,且,则下列说法错误的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在上的函数是奇函数,且满足.当时,,则的值是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数(,为自然对数的底数).若曲线上存在使得,则的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数是R上的单调递减函数,则实数a的取值范围为(   )
A.(-∞,2)B.(-∞,]C.(0,2)D.[,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数上的导函数为上的导函数为,若在上,恒成立,则称函数上为“凸函数”.已知当时,上是“凸函数”,则上(    )
A.既没有最大值,也没有最小值B.既有最大值,也有最小值
C.有最大值,没有最小值D.没有最大值,有最小值

查看答案和解析>>

同步练习册答案