已知{an}是正数组成的数列,a1=1,且点()(n∈N*)在函数y=x2+1的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若列数{bn}满足b1=1,bn+1=bn+2an,求证:bn·bn+2<b2n+1.
解法一: (Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1, 所以数列{an}是以1为首项,公差为1的等差数列. 故an=1+(a-1)×1=n. (Ⅱ)由(Ⅰ)知:an=n从而bn+1-bn=2n. bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1 =2n-1+2n-2+…+2+1 ==2n-1. 因为bn·bn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2 =(22n+2-2n+2-2n+1)-(22n+2-2-2n+1-1) =-5·2n+4·2n =-2n<0, 所以bn·bn+2<b, 解法二: (Ⅰ)同解法一. (Ⅱ)因为b2=1, bn·bn+2-b=(bn+1-2n)(bn+1+2n+1)-b =2n+1·bn-1-2n·bn+1-2n·2n+1 =2n(bn+1-2n+1) =2n(bn+2n-2n+1) =2n(bn-2n) =… =2n(b1-2) =-2n〈0, 所以bn-bn+2<b2n+1 本小题主要考查等差数列、等比数列等基本知识,考查转化与化归思想,考查推理与运算能力.满分12分. |
科目:高中数学 来源: 题型:
x | 2 1 |
x | 2 2 |
x | 2 n |
a1 |
c1 |
a2 |
c2 |
a3 |
c3 |
| ||
x2 |
| ||
x3 |
| ||
xn |
| ||
x1 |
P |
2 |
查看答案和解析>>
科目:高中数学 来源:2012年四川省眉山市高考数学二模试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com