精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)的定义域为R,且$\frac{f'(x)}{2}-f(x)>2$,若f(0)=-1,则$\frac{f(x)+2}{{{e^{2x}}}}>1$不等式的解集是(0,+∞).

分析 令g(x)=$\frac{f(x)+2}{{e}^{2x}}$,推出g(0)=1,判断g(x)在R上是单调增函数,转化求解不等式即可.

解答 解:f(0)=-1,令g(x)=$\frac{f(x)+2}{{e}^{2x}}$,则g(0)=1,又g′(x)=$\frac{f′(x)-2f(x)-4}{{e}^{2x}}$,
由已知$\frac{f'(x)}{2}-f(x)>2$,可得g′(x)>0,则g(x)在R上是单调增函数,g(0)=1,
所以$\frac{f(x)+2}{{{e^{2x}}}}>1$不等式的解集是(0,+∞).
故答案为:(0,+∞).

点评 本题考查导数的应用,不等式的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.过椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦点F作倾斜角为60°的直线l与椭圆C交于A,B两点,则$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设F1、F2是双曲线x2-4y2=4的两个焦点,P在双曲线上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow m=(1,1)$,向量$\overrightarrow n$与向量$\overrightarrow m$的夹角为$\frac{3}{4}π$,且$\overrightarrow m•\overrightarrow n=-1$
(1)求向量$\overrightarrow n$;
(2)若向量$\overrightarrow q=(1,0)$,且$|{\overrightarrow q+\overrightarrow n}|=|{\overrightarrow q-\overrightarrow n}|$,向量$\overrightarrow p=(cosA\;,\;2{cos^2}\frac{C}{2})$,其中A,B,C为△ABC的内角且有A+C=2B,求$|{\overrightarrow n+\overrightarrow p}|$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴,过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=(  )
A.2B.4$\sqrt{2}$C.2$\sqrt{10}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$f(x)={cos^2}x-\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}$,
(1)求出f(x)图象的对称中心的坐标;
(2)△ABC三个内角A、B、C所对边为a、b、c,若f(A)+1=0,b+c=2.求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(cosx)=sin3x,则f(sin20°)的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直线l∥平面α,直线a?平面α,则l与a(  )
A.平行B.异面C.相交D.没有公共点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)在实数集R上连续可导,且2f(x)-f′(x)>0在R上恒成立,则以下不等式一定成立的是(  )
A.$f(1)>\frac{f(2)}{e^2}$B.$f(1)<\frac{f(2)}{e^2}$C.f(-2)>e3f(1)D.f(-2)<e3f(1)

查看答案和解析>>

同步练习册答案