精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形F1B1 F2B2是一个面积为8的正方形.

(1)求椭圆C的方程;
(2)已知点P的坐标为P(-4,0), 过P点的直线L与椭圆C相交于M、N两点,当线段MN的中点G落在正方形内(包含边界)时,求直线L的斜率的取值范围.
(1);(2)

试题分析:(1)依题意需要求椭圆的标准方程,所以要找到两个关于基本量的等式,由以及面积的关系可求椭圆的方程.
(2)由于直线与椭圆的相交得到的弦的中点坐标,可通过假设直线方程与椭圆的方程联立可求得,判别式要大于零.其中用直线的斜率表示中点坐标.由于中点在正方形内,其实就是要符合一个不等式的可行域问题.因此通过解不等式即可得到所求的结论.
试题解析:(1)求得椭圆C的方程为;;
(2)∵点P的坐标为(-4,0),显然直线L的斜率k存在,
∴直线L方程为 如图设点M、N的坐标分别为,
线段MN的中点为,由
由△>0解得:      又
, ∵, ∴点G不可能在y轴的右边,
又直线F1B2, F1B1的方程分别为.
∴点G在正方形B1F2B1F1内的充要条件为:    即
.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知命题:方程表示焦点在y轴上的椭圆;
命题:双曲线的离心率,若为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,斜率为1的直线与椭圆C交于不同两点M,N.
(1)求椭圆C的方程;
(2)设直线过点F(1,0),求线段的长;
(3)若直线过点(m,0),且以为直径的圆恰过原点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的离心率为,左、右焦点分别为,点G在椭圆C上,且的面积为3.
(1)求椭圆C的方程:
(2)设椭圆的左、右顶点为A,B,过的直线与椭圆交于不同的两点M,N(不同于点A,B),探索直线AM,BN的交点能否在一条垂直于轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦距为(  )
A.  B.2C.4D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C=1(a>b>0)的离心率e,右焦点到直线=1的距离dO为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于AB两点,证明,点O到直线AB的距离为定值,并求弦AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的左右焦点为,若存在动点,满足,且的面积等于,则椭圆离心率的取值范围是         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆上的一点,分别为椭圆的上、下顶点,若△的面积为6,则满足条件的点的个数为(   )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2是椭圆C:(a>b>0)的左、右焦点,过F1的直线交于A,B两点.若AB⊥AF2,|AB|:|AF2|=3:4,则椭圆的离心率为      

查看答案和解析>>

同步练习册答案