精英家教网 > 高中数学 > 题目详情
如图棱长为2的正方体ABCD-A1B1C1D1中,E为棱CC1的中点.

(1)求证:A1B1∥平面ABE;
(2)求三棱锥VE-ABC的体积.(V=
1
3
sh)
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)由A1B1∥AB,能证明A1B1∥平面ABE.
(2)由已知得EC⊥平面ABC,且EC=1,S△ABC=
1
2
×2×2
=2,由此能求出三棱锥VE-ABC的体积.
解答: (1)证明:∵棱长为2的正方体ABCD-A1B1C1D1中,
A1B1∥AB,且A1B1?平面ABE,AB?平面ABE,
∴A1B1∥平面ABE.
(2)解:∵棱长为2的正方体ABCD-A1B1C1D1中,E为棱CC1的中点.
∴EC⊥平面ABC,且EC=1,
又∵S△ABC=
1
2
×2×2
=2,
∴三棱锥VE-ABC的体积V=
1
3
S△ABC•EC=
1
3
×2×1
=
2
3
点评:本题考查直线与平面平行的证明,考查三棱锥的体积的求法,是基础题,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:方程x2+mx+1=0有两个不等的负实数根;命题q:方程4x2+4(m-2)x+1=0无实数根.
(1)若“¬p”为假命题,求m范围;
(2)若“p或q”为真命题,“p且q”为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|x-2<0},B={x|-1<x<1},求:
(1)A∩B并说明集合A和集合B的关系,
(2)∁AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AB=AA1=4,BC=3,E、F分别是所在棱AB、BC的中点,点P是棱A1B1上的动点,联结EF,AC1.如图所示.
(1)求异面直线EF、AC1所成角的大小(用反三角函数值表示);
(2)(理科)求以E、F、A、P为顶点的三棱锥的体积.
(文科)求以E、B、F、P为顶点的三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线6x+2y+5=0,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的准线与圆x2+y2-4x-5=0相切,则p的值为(  )
A、10B、6C、4D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某一随机变量X的分布列如下,则m的值为(  )
X479
P0.5m0.4
A、0.4B、0.3
C、0.2D、0.1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,侧面AA1B1B⊥底面A1B1C1,四边形AA1B1B是矩形,A1C1=A1B1,BC∥B1C1,B1C1=2BC.
(Ⅰ)求证:A1C⊥B1C1
(Ⅱ)若AA1=A1B1=2,且∠B1A1C1=120°,求多面体ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)A>0,ω>0,-
π
2
<φ<0,-
π
2
<ω<0)的相邻对称轴之间的距离为
π
2
,且该函数图象的一个最高点为(
12
,4)
(1)求函数f(x)解析式和单调增区间;
(2)若x∈[
π
4
π
2
],求函数 f(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案