精英家教网 > 高中数学 > 题目详情
11.在单位圆上有两个动点P,Q,它们同时从点A(1,0)出发沿圆周运动,已知点P按逆时针方向每秒转$\frac{π}{3}$,点Q按顺时针方向每秒转$\frac{π}{6}$,试求它们从出发后到第五次相遇时各自走过的弧长.

分析 设出第5次相遇经历的时间,然后,建立等式,求解时间,利用弧长公式即可得解.

解答 解:设它们出发后第5次相遇,用的时间为t秒,则$\frac{π}{6}$t+$\frac{π}{3}$t=10π,
解得:t=20(秒),
此时动点P所走过的弧度为:$\frac{π}{3}$×20=$\frac{20π}{3}$,
动点N所走过的弧度为:$\frac{π}{6}×20$=$\frac{10π}{3}$.

点评 本题重点考查了三角函数的图象与性质、三角公式、弧长公式等知识,属于中档题,解题关键是灵活运用弧长公式进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知定义为R的函数f(x)满足下列条件:(1)对任意的实数x,y都有:f(x+y)=f(x)+f(y)-1,(2)当x>0时,f(x)>1.
(1)求f(0);
(2)求证:f(x)在R上为增函数;
(3)若f(6)=7,a≤-3,关于x的不等式f(ax-2)+f(x-x2)<3对任意的x∈[-1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,一楼房高AB为19$\sqrt{3}$米,某广告公司在楼顶安装一块宽BC为4米的广告牌,CD为拉杆,广告牌的倾角为60°,安装过程中,一身高为$\sqrt{3}$米的监理人员EF站在楼前观察该广传牌的安装效果:为保证安全,该监理人员不得站在广告牌的正下方:设AE=x米,该监理人员观察广告牌的视角∠BFC=θ.
(1)试将tanθ表示为x的函数;
(2)求点E的位置,使θ取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.记x=log34•log56•log78,y=log45•log67•log89,则xy=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=$\sqrt{5}$,求:
(1)x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$;
(2)x+x-1
(3)x-x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{xn},{yn}满足$\underset{lim}{n→∞}$(2xn+yn)=1,$\underset{lim}{n→∞}$(xn-2yn)=1,求$\underset{lim}{n→∞}$(xnyn)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设正实数x,y满足xy=$\frac{x-4y}{x+y}$,则y的最大值是$\sqrt{5}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数y=$\sqrt{lo{g}_{2}(4x-3)}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,0),若(λ$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则实数λ的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案