精英家教网 > 高中数学 > 题目详情
10.点P(a,3)到直线4x-3y+1=0的距离等于4,则P点的坐标是(  )
A.(7,3)B.(3,3)C.(7,3)或(-3,3)D.(-7,3)或(3,3)

分析 由已知条件利用点到直线距离公式能求出结果.

解答 解:∵点P(a,3)到直线4x-3y+1=0的距离等于4,
∴$\frac{|4a-3×3+1|}{\sqrt{16+9}}$=4,
解得a=7,或a=-3,
∴P(7,3)或P(-3,3).
故选:C.

点评 本题考查点的坐标的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4(m∈R)
(1)试判断直线l是否过定点,若过定点,则求出定点,不过,则说明理由;
(2)证明:不论m取什么实数,直线l与圆C恒相交;
(3)求圆C截直线l所得的弦长的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在大小为45°的二面角A-EF-D中,四边形ABFE与CDEF都是边长为1的正方形,则B与C两点间的距离是(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.1D.$\sqrt{3-\sqrt{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的函数f(x)满足:f(-x)=f(x),且f(x+2)=f(x),当x∈[-1,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间[-1,5]内函数F(x)=f(x)-logax有三个零点,则实数a的取值范围为(  )
A.($\frac{1}{2}$,2)B.(1,5)C.(2,3)D.(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-2ax-2by+a2-1=0,若a,b变化时,圆C2始终平分圆C1的周长,则圆C2的面积最小值时的方程为(x+1)2+(y+2)2=5..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.二次函数y=x2+bx+c的图象向左平移3个单位,再向上平移2个单位,得到二次函数y=x2-2x+1的图象,则c=14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图化简$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$=-$\overrightarrow{DA}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ln($\sqrt{{x}^{2}+1}+x$)
(1)证明:函数f(x)=ln($\sqrt{{x}^{2}+1}+x$)在定义域R上为增函数;
(2)若函数g(x)=f(x)+2x-2-x满足g(3a-1)+g(a-3)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.点P是底边长为2$\sqrt{3}$,高为2的正三棱柱表面上的动点,Q是该棱柱内切球表面上的动点,则|PQ|的取值范围是(  )
A.[0,$\sqrt{3}+1$]B.[0,$\sqrt{5}+1$]C.[0,3]D.[1,$\sqrt{5}+1$]

查看答案和解析>>

同步练习册答案