精英家教网 > 高中数学 > 题目详情
已知奇函数y=f(x)在区间(-∞,0]上的解析式为f(x)=x2+x,则切点横坐标为1的切线方程为(  )
分析:利用函数是奇函数,得到函数f(x)的表达式(x>0),然后利用导数的几何意义求切线方程即可.
解答:解:设x>0,则-x<0,则f(-x)=x2-x,因为=f(x)是奇函数,所以f(-x)=x2-x=-f(x),即f(x)=-x2+x,x>0
所以此时函数的导数f'(x)=-2x+1,x>0,
当x=1时,f'(1)=-2+1=-1.f(1)=0,
所以切点坐标为(1,0),所以切线方程为y=-1(x-1),即x+y-1=0.
故选B.
点评:本题主要考查导数的几何意义,利用函数的奇偶性求出函数的解析式是解决本题的关键,要求熟练掌握导数的基本应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数y=f(x)在区间(-∞,+∞)上是单调减函数.α,β,γ∈R,且α+β>0,β+γ>0,γ+α>0,则f(α)+f(β)+f(γ)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数y=f(x)在定义域(-1,1)上是减函数,满足f(1-a)+f(1-2a)<0,求a的取值范围
(0,
2
3
(0,
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数y=f(x)定义域是[-4,4],当-4≤x≤0时,y=f(x)=-x2-2x.
(1)求函数f(x)的解析式;
(2)求函数f(x)的值域;
(3)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数y=f(x)在定义域(-1,1)上是减函数,当0<x<1时f(x)=-x3-x2
①求函数f(x)的解析式;
②若有f(1-a)+f(1-2a)<0,求a的取值范围.

查看答案和解析>>

同步练习册答案