4£®´Óij¸ßУÄÐÉúÖÐËæ»ú³éÈ¡100ÃûѧÉú£¬²âµÃËûÃǵÄÉí¸ß£¨µ¥Î»£ºcm£©Çé¿öÈçÏÂ±í£º
·Ö×鯵ÊýƵÂÊ
[160£¬165£©100.10
[165£¬170£©300.30
[170£¬175£©a0.35
[175£¬180£©bc
[180£¬185]100.10
ºÏ¼Æ1001.00
£¨¢ñ£©Çóa£¬b£¬cµÄÖµ£»
£¨¢ò£©°´±íÖеÄÉí¸ß×é±ð½øÐзֲã³éÑù£¬´ÓÕâ100ÃûѧÉúÖгéÈ¡20Ãûµ£ÈÎij¹ú¼ÊÂíÀ­ËÉÖ¾Ô¸Õߣ¬ÔÙ´ÓÉí¸ß²»µÍÓÚ175cmµÄÖ¾Ô¸ÕßÖÐËæ»úÑ¡³öÁ½Ãûµ£ÈÎÓ­±ö¹¤×÷£¬ÇóÕâÁ½Ãûµ£ÈÎÓ­±ö¹¤×÷µÄÖ¾Ô¸ÕßÖÐÖÁÉÙÓÐÒ»ÃûµÄÉí¸ß²»µÍÓÚ180cmµÄ¸ÅÂÊ£®

·ÖÎö £¨¢ñ£©ÓÉÆµÂÊ=$\frac{ƵÊý}{×ÜÊý}$ºÍƵÂÊ·Ö²¼±íµÄÐÔÖÊÄÜÇó³öa£¬b£¬cµÄÖµ£®
£¨¢ò£©³éÈ¡µÄ20ÃûÖ¾Ô¸ÕßÖУ¬Éí¸ß²»µÍÓÚ175cmµÄÖ¾Ô¸¶¼ÓÐ5ÈË£¬ÆäÖÐÉí¸ßÔÚ[175£¬180£©µÄ¹²ÓÐ3ÈË£¬Éí¸ßÔÚ[180£¬185£©µÄ¹²ÓÐ2ÈË£¬ÓÉ´ËÀûÓÃÁоٷ¨ÄÜÇó³öÕâÁ½Ãûµ£ÈÎÓ­±ö¹¤×÷µÄÖ¾Ô¸ÕßÖÐÖÁÉÙÓÐÒ»ÃûµÄÉí¸ß²»µÍÓÚ180cmµÄ¸ÅÂÊ£®

½â´ð £¨±¾Ð¡ÌâÂú·Ö10·Ö£©
½â£º£¨¢ñ£©ÓÉÆµÂÊ·Ö²¼±íµÃ£ºa=100¡Á0.35=35£¬
c=1-£¨0.10+0.30+0.35+0.10£©=0.15£¬
b=100¡Á0.15=15£®
£¨¢ò£©ÓÉÌâÒâÖª³éÈ¡µÄ20ÃûÖ¾Ô¸ÕßÖУ¬Éí¸ß²»µÍÓÚ175cmµÄÖ¾Ô¸¶¼ÓÐ5ÈË£¬
ÆäÖÐÉí¸ßÔÚ[175£¬180£©µÄ¹²ÓÐ3ÈË£¬·Ö±ðÉèΪA¡¢B¡¢C£¬
Éí¸ßÔÚ[180£¬185£©µÄ¹²ÓÐ2ÈË£¬·Ö±ðÉèΪD¡¢E£¬
ÏÖ´ÓA¡¢B¡¢C¡¢D¡¢EÎåÈËÖÐѡȡÁ½È˵£ÈÎÓ­±ö¹¤×÷£¬¹²ÓÐ10ÖÖÇé¿ö£¬·Ö±ðΪ£º
£¨A¡¢B£©£¬£¨A¡¢C£©£¬£¨A¡¢D£©£¬£¨A¡¢E£©£¬£¨B¡¢C£©£¬
£¨B¡¢D£©£¬£¨B¡¢E£©£¬£¨C¡¢D£©£¬£¨C¡¢E£©£¬£¨D¡¢E£©£¬
M=¡°Á½Ãûµ£ÈÎÓ­±ö¹¤×÷µÄÖ¾Ô¸ÕßÖÐÖÁÉÙÓÐÒ»ÃûµÄÉí¸ß²»µÍÓÚ180cm¡±£¬
ÔòʼþM°üº¬7¸ö»ù±¾Ê¼þ£¬·Ö±ðΪ£ºA¡¢D£©£¬£¨A¡¢E£©£¬
£¨B¡¢D£©£¬£¨B¡¢E£©£¬£¨C¡¢D£©£¬£¨C¡¢E£©£¬£¨D¡¢E£©£¬
¡àÕâÁ½Ãûµ£ÈÎÓ­±ö¹¤×÷µÄÖ¾Ô¸ÕßÖÐÖÁÉÙÓÐÒ»ÃûµÄÉí¸ß²»µÍÓÚ180cmµÄ¸ÅÂÊ£º
P£¨M£©=$\frac{7}{10}$£®

µãÆÀ ±¾Ì⿼²éƵÂÊ·Ö²¼±íµÄÓ¦Ó㬿¼²é¸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁоٷ¨µÄÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}-{2^{-x}}+1\\ f£¨{x-1}£©\end{array}\right.$$\begin{array}{l}{x¡Ü0}\\{x£¾0}\end{array}$£¬ÔòÏÂÁÐÃüÌâÖУº
£¨1£©º¯Êýf£¨x£©ÎªÖÜÆÚº¯Êý£»
£¨2£©º¯Êýf£¨x£©ÔÚÇø¼ä£¨m£¬m+1£©£¨m¡ÊN£©Éϵ¥µ÷µÝÔö£»
£¨3£©º¯Êýf£¨x£©ÔÚx=m-1£¨m¡ÊN£©È¡µ½×î´óÖµ0£¬ÇÒÎÞ×îСֵ£»
£¨4£©Èô·½³Ìf£¨x£©=loga£¨x+2£©£¨0£¼a£¼1£©ÓÐÇÒÖ»ÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬Ôò$a¡Ê[{\frac{1}{3}£¬\frac{1}{2}}£©$£®
ÕýÈ·µÄÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÇúÏßy=xlnxÔڵ㣨1£¬0£©´¦µÄÇÐÏß·½³ÌÊÇ£¨¡¡¡¡£©
A£®y=x-1B£®y=x+1C£®y=2x-2D£®y=2x+2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªa£¾0£¬b£¾0£¬ÇÒ2a+b=ab£¬Ôòa+2bµÄ×îСֵΪ£¨¡¡¡¡£©
A£®5+$2\sqrt{2}$B£®$8\sqrt{2}$C£®5D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èôa=20.1£¬b=0.12£¬c=log20.1£¬Ôò£¨¡¡¡¡£©
A£®a£¾b£¾cB£®b£¾a£¾cC£®c£¾a£¾bD£®b£¾c£¾a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Éèf£¨x£©=$\left\{\begin{array}{l}{£¨x+1£©^{2}£¬x£¼0}\\{lo{g}_{2}x£¬x¡Ý0}\end{array}\right.$£¬Ôòf[f£¨-3£©]=£¨¡¡¡¡£©
A£®1B£®2C£®4D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÊýÁÐ{an}£¬{bn}ÖУ¬a1=-4£¬b1=1£¬an+1=2an+bn£¨n¡ÊN*£©£¬ÇÒÊýÁÐ$\left\{{\frac{a_n}{2^n}}\right\}$ÊǵȲîÊýÁУ®
£¨1£©Çó{bn}µÄǰnÏîTn
£¨2£©ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇóʹSn×îСµÄnµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èô¦ÁÊǵÚÈýÏóÏ޽ǣ¬ÇÒsin$\frac{¦Á}{2}$=$\frac{2\sqrt{5}}{5}$£¬Ôòtan$\frac{¦Á}{2}$µÈÓÚ£¨¡¡¡¡£©
A£®-$\frac{1}{2}$B£®-$\frac{1}{3}$C£®-2D£®-$\frac{1}{2}$»ò-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒÔÚ[0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬Èôf£¨a£©¡Ýf£¨2£©£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸