精英家教网 > 高中数学 > 题目详情
已知7163=209×34+57,209=57×3+38,57=38×1+19,38=19×2.根据上述系列等式,确定7163和209的最大公约数是   
【答案】分析:利用辗转相除法即可求出.
解答:解:由7163=209×34+57,209=57×3+38,57=38×1+19,38=19×2,
可知:(7163,209)=(209,57)=(57,38)=(38,19)=19(其中(a,b)表示整数a、b的最大公约数).
故7163和209的最大公约数是19.
故答案为19.
点评:熟练掌握辗转相除法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、已知7163=209×34+57,209=57×3+38,57=38×1=19,38=19×2.根据上述系列等式,确定7163和209的最大公约数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知7163=209×34+57,209=57×3+38,57=38×1+19,38=19×2.根据上述系列等式,确定7163和209的最大公约数是
19
19

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省安庆市宿松县复兴中学高二(上)第一次月考数学试卷(理科)(解析版) 题型:填空题

已知7163=209×34+57,209=57×3+38,57=38×1+19,38=19×2.根据上述系列等式,确定7163和209的最大公约数是   

查看答案和解析>>

科目:高中数学 来源:2008-2009学年山东省烟台市莱州一中高二(下)期末数学试卷(文科)(解析版) 题型:选择题

已知7163=209×34+57,209=57×3+38,57=38×1=19,38=19×2.根据上述系列等式,确定7163和209的最大公约数是( )
A.19
B.2
C.38
D.57

查看答案和解析>>

同步练习册答案