精英家教网 > 高中数学 > 题目详情
函数f(x)=
x2-a
x-b
(a>0)
在x=-3处不连续,且
lim
x→b
f(x)
存在,则a+b的值等于(  )
A、-3B、6C、6D、-6
分析:由函数f(x)=
x2-a
x-b
(a>0)
在x=-3处不连续,知b=-3.再由
lim
x→b
f(x)
存在,知a=9,由此可知a+b的值.
解答:解:∵函数f(x)=
x2-a
x-b
(a>0)
在x=-3处不连续,
∴b=-3.
lim
x→b
f(x)
存在,
lim
x→-3
x2-a
x+3
存在,
∴a=9,∴a+b=9-3=6.
故选B.
点评:本题考查极限的性质及运算,解题时要结合题设条件注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+4xx≥0
4x-x2x<0.
若f(2-a2)>f(a),则实数a的取值范围是(  )
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-2,1)
D、(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+1x-1
,其图象在点(0,-1)处的切线为l.
(I)求l的方程;
(II)求与l平行的切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
x2+1
 
 
 
 
 
 
,(x≥0)
-x+
1
 
 
 
 
 
,(x<0)
,则f(-1)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知函数f(x)=
-x2+4x-10(x≤2)
log3(x-1)-6(x>2)
,若f(6-a2)>f(5a),则实数a的取值范围是
(-6,1)
(-6,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)设函数f(x)=-x2+2ax+m,g(x)=
ax

(I)若函数f(x),g(x)在[1,2]上都是减函数,求实数a的取值范围;
(II)当a=1时,设函数h(x)=f(x)g(x),若h(x)在(0,+∞)内的最大值为-4,求实数m的值.

查看答案和解析>>

同步练习册答案