精英家教网 > 高中数学 > 题目详情
已知等差数列{ an }中,前n项和Sn满足:S10+S20=1590,S10-S20=-930.
(1)求数列{ an }的通项公式以及前n项和公式;
(2)是否存在三角形同时具有以下两个性质,如果存在,请求出三角形的三边长和b值;如果不存在,请说明理由.
①三边是数列{ an+b}中的连续三项,其中b∈N*;
②最小角是最大角的一半.
分析:(1)先求出S10=330,S20=1260,再利用等差数列前n项和公式可得结论;
(2)假设存在,三边为6n+b,6n+b+6,6n+b+12,设x=6n+b(x>6),则三边为x,x+6,x+12,利用余弦定理及二倍角公式可得结论.
解答:解:(1)由S10+S20=1590,S10-S20=-930,可得:S10=330,S20=1260.
由等差数列前n项和公式可得:10a1+45d=330,20a1+190d=1260,可得:a1=6,d=6,
所以an=6+(n-1)×6=6n,Sn=6n+3n(n-1);
(2)假设存在,三边为6n+b,6n+b+6,6n+b+12,设x=6n+b(x>6),则三边为x,x+6,x+12,
设最小角为α,则最大角为2α,∴cosα=
x2+36x+180
2(x+6)(x+12)
=
x+30
2(x+12)
,cos2α=
x2-12x-108
2x(x+6)
=
x-18
2x

∵cos2α=2cos2α-1,∴
x-18
2x
=2[
x+30
2(x+12)
]2-1
x-18
x
=
-(x-6)2+648
(x+12)2
,此方程无解,∴不存在.
点评:本题考查数列的通项与求和,考查余弦定理、二倍角公式,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列数﹛an﹜的前n项和为Sn,等比数列﹛bn﹜的各项均为正数,公比是q,且满足:a1=3,b1=1,b2+S2=12,S2=b2q.
(Ⅰ)求an与bn
(Ⅱ)设cn=3bn-λ•2
an3
(λ∈R),若﹛cn﹜满足:cn+1>cn对任意的n∈N°恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年周至二中三模理) 已知等差数列{an}的公差为2,若a1a3a4成等比数列,则a2等于         (    )

(A)-4   (B)-6     (C)-8     (D)-10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a10=5,a13=20,求a50.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的项数n为奇数,且奇数项和S=44,偶数项和S=33,求项数n及数列的中间项.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三上学期第二次理科数学测试卷(解析版) 题型:选择题

已知等差数列{an}与{bn}的前n项和分别为Sn与Tn, 若, 则的值是  

A.             B.               C.           D.

 

查看答案和解析>>

同步练习册答案