精英家教网 > 高中数学 > 题目详情
两非零向量
a
b
,若|
a
|=|
b
|=|
a
-
b
|
,则
a
a
+
b
的夹角为(  )
分析:条件平方可得 2
a
b
=
a
2
,再利用向量的数量积公式求出夹角的余弦,从而求出向量的夹角.
解答:解:两非零向量
a
b
|
a
|=|
b
|=|
a
-
b
|
,平方可得 2
a
b
=
a
2

a
a
+
b
的夹角为 θ,则cosθ=
a
•(
a
+
b
)
|
a
|•|
a
+
b
|
=
a
2
+
a
b
|
a
|•
a
2
+
b
2
+2
a
b
=
3
2
a
2
|
a
|•
3
|
a
|
=
3
2

再由 0°≤θ≤180°可得 θ=30°,
故选A.
点评:解决向量的夹角问题,应该利用向量的数量积公式作为工具解决,但一定注意夹角的取值范围,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在下列命题中:①若两个非零向量
a
b
共线,则
a
b
所在的直线平行;②若
a
b
所在的直线是异面直线,则
a
b
一定不共面;③若
a
b
c
三向量两两共面,则
a
b
c
c三直线一定也共面;其中正确命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列命题中:
①若两个非零向量
a
b
共线则
a
b
所在的直线平行;
②若
a
b
所在的直线是异面直线,则
a
b
一定不共面;
③若
a
b
c
三向量两两共面,则
a
b
c
三向量一定也共面;
④若
a
b
c
是三个非零向量,则空间任意一个向量p总可以唯一表示为
p
=x
a
+y
b
+z
c
(x,y,z∈R).
其中正确命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①在函数y=cos(x-
π
4
)cos(x+
π
4
)
的图象中,相邻两个对称中心的距离为
π
2

②若锐角α,β满足cosα>sinβ,则α+β<
π
2

③函数f(x)=ax2-2ax-1有且仅有一个零点,则实数a=-1;
④要得到函数y=sin(
x
2
-
π
4
)
的图象,只需将y=sin
x
2
的图象向右平移
π
4
个单位.
⑤非零向量
a
b
满足|
a
|=|
b
|=|
a
-
b
|,则
a
a
+
b
的夹角为60°.
其中所有真命题的序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列命题中:
①若两个非零向量
a
b
共线则
a
b
所在的直线平行;
②若
a
b
所在的直线是异面直线,则
a
b
一定不共面;
③若
a
b
c
三向量两两共面,则
a
b
c
三向量一定也共面;
④若
a
b
c
是三个非零向量,则空间任意一个向量p总可以唯一表示为
p
=x
a
+y
b
+z
c
(x,y,z∈R).
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案