精英家教网 > 高中数学 > 题目详情
18.若函数f(x)=$\left\{\begin{array}{l}{sinx+\frac{3}{2},x≥0}\\{{x}^{2}+a,x<0}\end{array}\right.$(其中a∈R)的值域为[$\frac{1}{2}$,+∞),则a的取值范围是$[{\frac{1}{2},\frac{5}{2}}]$.

分析 分别求x≥0与x<0时f(x)的值域,再由集合的并运算解得.

解答 解:当x≥0时,f(x)=sinx+$\frac{3}{2}$,
故$\frac{1}{2}$≤f(x)$≤\frac{5}{2}$,
当x<0时,f(x)=x2+a,
故f(x)>a;
∵函数f(x)的值域为$[\frac{1}{2},+∞)$,
∴$\frac{1}{2}$≤a≤$\frac{5}{2}$;
故答案为:$[{\frac{1}{2},\frac{5}{2}}]$.

点评 本题考查了分段函数的值域的求法应用及分类讨论的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.直线l与两条直线x-y-7=0,y=1分别交于P、Q两点,线段PQ的中点为(1,-1),则直线l的斜率为-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x-10|+|x-20|,且满足f(x)<10a+10(a∈R)的解集不是空集.
(Ⅰ)求实数a的取值集合A
(Ⅱ)若b∈A,a≠b,求证aabb>abba

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.从{1,2,3,4,5,6}中任取两个不同的数m,n(m>n),则$\frac{n}{m}$能够约分的概率为$\frac{4}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知定义在R上的函数$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)设g(x)=f(x)+1,h(x)=lnx
①判断g(x)的单调性并说明理由;
②若g(s)=h(t),求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等差数列{an}中,a1>0,S3=S10,则当Sn取最大值时,n的值为(  )
A.6B.7C.6或7D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f(x)=-x2+2x+3,x∈[0,3]的最大值和最小值分别是M,m,则M+m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设点A(x1,y1),B(x2,y2)是椭圆$\frac{{x}^{2}}{4}$+y2=1上两点,若过点A,B且斜率分别为-$\frac{{x}_{1}}{4{y}_{1}}$,-$\frac{{x}_{2}}{4{y}_{2}}$的两直线交于点P,且直线OA与直线OB的斜率之积为-$\frac{1}{4}$,E($\sqrt{6}$,0),则|PE|的最小值为2$\sqrt{2}$-$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在直角坐标系中,已知A(-1,3),$\overrightarrow{AB}$=(6.-2),则点B的坐标为(5,1).

查看答案和解析>>

同步练习册答案