精英家教网 > 高中数学 > 题目详情
如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m和15m,从建筑物AB的顶部A看建筑物CD的张角∠CAD=45°.
(1)求BC的长度;
(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的张角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?
【答案】分析:(1)作AN⊥CD于N,问题转化为求△ACD边CD上的高.设AN=x,只要建立起关于x的方程,则问题可解.
(2)利用(1)设出BP为t,直接求出α、β的正切值,然后求出∠ADB的正切值,利用基本不等式求解表达式的最小值,推出BP是值即可.
解答:解:(1)如图作AN⊥CD于N.
∵AB∥CD,AB=9,CD=15,∴DN=6,EC=9.
设AN=x,∠DAN=θ,
∵∠CAD=45°,∴∠CAN=45°-θ.
在Rt△ANC和Rt△AND中,
∵tanθ=,tan(45°-θ)=
=tan(45°-θ)=
=,化简整理得x2-15x-54=0,
解得x1=18,x2=-3(舍去).
BC的长度是18 m.
(2)设BP=t,所以PC=18-t,
tanα=,tanβ=
所以tan(α+β)=
=
=-
=-

当且仅当t+27=,即t=时,α+β最小.
P在距离B时,α+β最小.
点评:考查了解三角形的实际应用.解这类题的关键是建立数学模型,设出恰当的角.考查两角和与差的三角函数,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,两座建筑物AB,CD的高度分别是9m和15m,从建筑AB看建筑物CD的张角∠CAD=45°,求建筑物AB和CD的底部之间的距离BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州一模)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m和15m,从建筑物AB的顶部A看建筑物CD的张角∠CAD=45°.
(1)求BC的长度;
(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的张角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,两座建筑物AB,CD的高度分别为9m和15m,从建筑物AB的顶部看建筑物CD的张角∠CAD=45°.
(1)求建筑物AB和CD的底部之间的距离BD;
(2)求∠ADB的正切值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省高三第一学期期中考试理科数学试卷(解析版) 题型:解答题

如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m和15m,从建筑物AB的顶部A看建筑物CD的张角

(1)求BC的长度;

(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的张角分别为,问点P在何处时,最小?

 

查看答案和解析>>

科目:高中数学 来源:2015届江苏省宝应县高一下学期期中考试数学试卷(解析版) 题型:解答题

如图,两座建筑物AB,CD的高度分别是9m和15m,从建筑物AB的顶部看建筑物CD的张角,求建筑物AB和CD底部之间的距离BD

 

查看答案和解析>>

同步练习册答案