精英家教网 > 高中数学 > 题目详情
已知曲线,直线l:kx-y-k=0,O为坐标原点.
(1)讨论曲线C所表示的轨迹形状;
(2)当k=1时,直线l与曲线C相交于两点M,N,若,求曲线C的方程;
(3)当a=-1时,直线l与曲线C相交于两点M,N,试问在曲线C上是否存在点Q,使得?若存在,求实数λ的取值范围;若不存在,请说明理由.
【答案】分析:(1)分a<0 时,a=1 时,0<a<1 时,a>1 时这四种情况分别讨论.
(2)把直线l的方程代入曲线C的方程,利用根与系数的关系、弦长公式求出 a 的值.
(3)当a=-1时,曲线C表示焦点在x轴上的等轴双曲线,直线l:kx-y-k=0过曲线C的右顶点(1,0),不妨设为点M,设点N(x2,y2),把直线l的方程代入曲线C的方程,由根与系数的关系求得点N坐标及k值,由,求得点Q的坐标,从而得出结论.
解答:解:(1)对于曲线,当a<0 时,曲线表示焦点在x 轴上的双曲线;
当a=1 时,曲线表示单位圆;   当0<a<1 时,曲线表示焦点在x 轴上的椭圆;
当a>1 时,曲线表示曲线表示焦点在y 轴上的椭圆.
(2)当k=1时,直线l的方程为 y=x-1,代入曲线得,(a+1)x2-2x+1-a=0,
∴x1+x2=,x1•x2=,由弦长公式得  = 
==,∴=1,
∴a=1.
(3)当a=-1时,曲线 即 C:x2-y2=1,表示焦点在x轴上的等轴双曲线.
直线l:kx-y-k=0过曲线C的右顶点(1,0),不妨设为点M,设点N(x2,y2).
把直线l:kx-y-k=0代入曲线C的方程得 (1-k2)x2+2k2 x-k2-1=0,由题意知,1和x2是此方程的两个根,
△=4k4-4(1-k2)(-k2-1)>0,∴1+x2=-,1×x2=,∴k=0.
,∴=( 1+x2,0+y2)=( 0,0)=(0,0).
∴点Q (0,0),故点Q不在曲线C上,故不存在点Q满足条件.
点评:本题考查方程表示的曲线,弦长公式,两个向量坐标形式的运算,一元二次方程根与系数的关系,求点Q的坐标是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C:4x2-y|y|=1.
(Ⅰ)若直线l:y=2x+m与曲线C只有一个公共点,求实数m的取值范围;
(Ⅱ)若直线l:y=kx+1与曲线C恒有两个不同的交点A和B,且
OA
OB
1
3
(其中O为原点),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:
x=2cosθ
y=sinθ
(θ为参数),若A、B是曲线C上关于坐标轴不对称的任意两点.
(1)求AB的垂直平分线l在x轴上截距的取值范围;
(2)设过点M(1,0)的直线l是曲线C上A,B两点连线的垂直平分线,求l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C上任意一点到直线x=
3
2
2
的距离与它到点(
2
,0)
的距离之比是
6
2
.   
(I)求曲线C的方程;
(II)设B为曲线C与y轴负半轴的交点,问:是否存在方向向量为
m
=(1,k)(k≠0)
的直线l,l与曲线C相交于M、N两点,使|
BM
|=|
BN
|
,且
BM
BN
夹角为60°?若存在,求出k值,并写出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市十校高三(下)第二次联考数学试卷(理科)(解析版) 题型:解答题

已知曲线,直线l:kx-y-k=0,O为坐标原点.
(1)讨论曲线C所表示的轨迹形状;
(2)当a=-1时,直线l与曲线C相交于两点M,N,试问在曲线C上是否存在点Q,使得?若存在,求实数λ的取值范围;若不存在,请说明理由;
(3)若直线l与x轴的交点为P,当a>0时,是否存在这样的以P为直角顶点的内接于曲线C的等腰直角三角形?若存在,求出共有几个?若不存在,请说明理由.

查看答案和解析>>

同步练习册答案