精英家教网 > 高中数学 > 题目详情

函数数学公式(x>0).
(1)求f(x)的单调减区间并证明;
(2)是否存在正实数m,n(m<n),使函数f(x)的定义域为[m,n]时值域为[数学公式数学公式]?若存在,求m,n的值;若不存在,请说明理由.

解:(1)f(x)的单调减区间为(0,1](2分)
任取x1,x2∈(0,1]且x1<x2(3分)
(4分)
==(6分)
∴f(x1)>f(x2
∴f(x)在(0,1]上为减函数(7分)

(2)①若m,n∈(0,1],则f(m)>f(n)
??
两式相减,得不可能成立(9分)
②若m∈(0,1],n∈[1,+∞),则f(x)的最小值为0,不合题意(10分)
③若m,n∈[1,+∞),则f(m)<f(n)
?
;∴m,n为的不等实根

综上,存在符合题意.(12分)
分析:(1)按证明一个函数在某个区间上的单调性的基本步骤取点,作差,变形,判断即可.
(2)有(1)知f(x)在(0,1]减,在[1,+∞)上增,所以对[m,n]分三种情况①m,n∈(0,1],②m∈(0,1],n∈[1,+∞),③m,n∈[1,+∞),来讨论即可.
点评:本题综合考查了函数单调性的判断和证明以及对函数单调性的应用,是一道不可多得的好题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=logax(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a等于(    )

A.                 B.                 C.                 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=logax(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a等于(    )

A.            B.            C.            D.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=logax(0<a<1)在区间[a,2a]上最大值是最小值的3倍,则a等于(    )

A.                 B.                     C.                 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax(0<a<1),对于下列命题:

①若x>0,则0<f(x)<1;

②若x<1,则f(x)>a;

③若f(x1)>f(x2),则x1<x2.其中正确的命题(    )

A.有3个            B.有2个              C.有1个               D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知函数x>0).(1)若b,求证e是自然对数的底数);(2)设F(x)=+x≥1,a∈R),试问函数F(x)是否存在最小值?若存在,求出最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案