精英家教网 > 高中数学 > 题目详情
求下列函数的导数
(1)y=x4-3x2-5x+6
(2)y=x•tanx
(3)y=(x+1)(x+2)(x+3)
(4)y=
x+1
x-1
考点:导数的运算
专题:导数的概念及应用
分析:根据函数的导数公式分别进行求导即可.
解答: 解:(1)∵y=x4-3x2-5x+6,∴y′=4x3-6x-5,
(2)∵y=x•tanx,∴y′=tanx+x(tanx)′=tanx+x•
1
cos2x

(3)∵y=(x+1)(x+2)(x+3)=x3+6x2+11x+6,
∴y′=3x2+12x+11,
(4)∵y=
x+1
x-1

∴y′=
x-1-(x+1)
(x+1)2
=-
2
(x+1)2
点评:本题主要考查函数的导数的计算,要求熟练掌握掌握常见函数的导数公式以及导数的运算法则,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
1-tan2x
1+tan2x
的最小正周期是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)正弦定理
 
,(2)余弦定理,cosA=
 
,(3)等差数列定义式
 
,通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上周期为4的奇函数,当x∈(0,2]时,f(x)=2x+log2x,则f(2015)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给定两个命题:
p:?a∈R,使y=x2+
a
x+1
为偶函数;
q:?x∈R,(sinx-1)(cosx-1)≥0恒成立.
其中正确的命题的为(  )
A、p∧qB、p∧¬q
C、p∨¬qD、¬p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
3
-cos2ωx(ω>0)的周期与函数g(x)=tan
x
2
的周期相等,则ω等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα=-
3
5
,α为三角形的内角,则tan(
4
-α)的值为(  )
A、
1
7
B、-
1
7
C、7
D、-7

查看答案和解析>>

科目:高中数学 来源: 题型:

如果lgx+lgx2+…+lgx10=110,那么lgx+lg2x+…+lg10x=(  )
A、211-2
B、211+2
C、210+2
D、210-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-kx+1在区间[1,3]上是增函数,则实数k的取值范围为
 

查看答案和解析>>

同步练习册答案