精英家教网 > 高中数学 > 题目详情
13.已知数列{an}中,a1=$\frac{1}{2}$,an≠0,Sn为该数列的前n项和,且Sn+1=an(1-an+1)+Sn,n∈N*
(1)求数列{an}的通项公式;
(2)若不等式an+an+1+an+2+…+a3n>$\frac{a}{24}$对一切正整数n都成立,求正整数a的最大值,并证明结论.

分析 (1)根据数列的递推关系进行化简,构造等差数列进行求解即可.
(2)直接利用数学归纳法的证明步骤,通过n=1,假设n=k时等式成立,证明n=k+1时等式也成立,即可证明结果.

解答 解:(1)∵${s_{n+1}}={a_n}(1-{a_{n+1}})+{s_n},n∈{N^*}$,
∴sn+1-sn=an(1-an+1)∴an+1=an(1-an+1)=an-anan+1
∴an-an+1=anan+1
又an≠0∴$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=1$,
∴$\left\{{\frac{1}{a_n}}\right\}$构成以2为首项,以1为公差的等差数列
.$\frac{1}{a_n}=2+(n-1)×1=n+1$,
${a_n}=\frac{1}{n+1},n∈{N^*}$
(2)当n=1时,$\frac{1}{1+1}+\frac{1}{1+2}+\frac{1}{3+1}>\frac{a}{24}$,即$\frac{26}{24}>\frac{a}{24}$,所以a<26.
而a是正整数,所以取a=25,
下面用数学归纳法证明:$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{3n+1}>\frac{25}{24}$.
(1)当n=1时,已证;
(2)假设当n=k时,不等式成立,即$\frac{1}{k+1}+\frac{1}{k+2}+…+\frac{1}{3k+1}>\frac{25}{24}$.
则当n=k+1时,有$\frac{1}{(k+1)+1}+\frac{1}{(k+1)+2}+…+\frac{1}{3(k+1)+1}$
=$\frac{1}{k+1}+\frac{1}{k+2}+…+\frac{1}{3k+1}+\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}-\frac{1}{k+1}$

$>\frac{25}{24}+\frac{1}{3k+2}+\frac{1}{3k+4}-\frac{2}{3(k+1)}$.                              
因为$\frac{1}{3k+2}+\frac{1}{3k+4}=\frac{6(k+1)}{9{k}^{2}+18k+8}>\frac{2}{3(k+1)}$,
所以$\frac{1}{3k+2}+\frac{1}{3k+4}-\frac{2}{3(k+1)}>0$.
所以当n=k+1时不等式也成立.                 
由(1)(2)知,对一切正整数n,都有$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{3n+1}>\frac{25}{24}$;
故a的最大值为25.

点评 本题考查数学通项公式的求解,以及递推数列的应用,在利用数学归纳法证明等式的步骤中,注意证明n=k+1时必须用上假设,注意证明的方法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知直线x-my+2m+1=0.
(1)求证:无论m为何实数,直线总经过第二象限;
(2)为使直线不经过第四象限,求m的取值范围.
(3)若直线交x轴于负半轴、交y轴于正半轴,交点分别为A、B,求直线与坐标轴围成的三角形的面积的最小值,并求出此时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}的前n项和为Sn,an≠0(n∈N*),anan+1=Sn,则a3-a1=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,设角A、B、C的对边分别为a、b、c,且a≤b≤c,
(1)若b2=ac,求角B的取值范围;
(2)求证:以$\sqrt{a},\sqrt{b},\sqrt{c}$为长的线段能构成锐角三角形;
(3)当0≤x≤1时,以ax、bx、cx为长的线段是否一定能构成三角形?写出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解下列不等式:
(1)|x2-2x|>3
(2)0<|x-2|+x<4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知正三棱柱ABC-A1B1C1内接于球O,若AB=3,AA1=2,则球O的体积为(  )
A.$\frac{4π}{3}$B.16πC.$\frac{32π}{3}$D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在如图所示的程序中,若N=5时,则输出的S等于(  )
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若$(\sqrt{3}b-c)cosA=acosC$,则cosA=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知Sn是正项数列{an}前n项和,对任意n∈N*,总有Sn=$\frac{1}{2}$an+$\frac{2}{{a}_{n}}$,则an=2($\sqrt{n}$-$\sqrt{n-1}$).

查看答案和解析>>

同步练习册答案