【题目】已知三次函数的导函数, , 为实数.
(1)若曲线在点处切线的斜率为12,求的值;
(2)若在区间上的最小值,最大值分别为 ,1,且,求函数的解析式.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.
(Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;
(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12lnx恒成立,求a的取值范围;
(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),
记h(a)=M(a)-m(a),求h(a)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的左右焦点分别为F1 , F2 , 点P为椭圆C上的任意一点,若以F1 , F2 , P三点为顶点的三角形一定不可能为等腰钝角三角形,则椭圆C的离心率的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=(x2﹣2ax)ebx , x为自变量.
(1)函数f(x)分别在x=﹣1和x=1处取得极小值和极大值,求a,b.
(2)若a≥0且b=1,f(x)在[﹣1,1]上是单调函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:x∈R,x2+x+1>0,命题q:x∈Q,x2=3,则下列命题中是真命题的是( )
A.p∧q
B.¬p∨q
C.¬p∧¬q
D.¬p∨¬q
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在以下关于向量的命题中,不正确的是( )
A.若向量 ,向量 (xy≠0),则
B.若四边形ABCD为菱形,则
C.点G是△ABC的重心,则
D.△ABC中, 和 的夹角等于A
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com